


AN ABSTRACT OF THE THESIS OF

Daniel J. Magee for the degree of Master of Science in Mechanical Engineering

presented on June 8, 2018.

Title: Swept time-space domain decomposition on GPUs and heterogeneous computing

systems

Abstract approved:

Kyle Niemeyer

Modern scienti�c and engineering problems often require simulations with a level of res-

olution di�cult to achieve in reasonable amounts of time�even in e�ectively parallelized

programs. Therefore, applications that exploit high performance computing (HPC) sys-

tems have become invaluable in academia and industry over the past two decades. Ad-

dressing the questions that arise from continual scienti�c advancement requires increasing

development in these large-scale computational systems; solutions from hardware and

software are required to supply the necessary throughput for demand across scienti�c

disciplines. The most important development on the hardware side has been the General

Purpose Graphics Processing Unit (GPGPU), a class of massively parallel device that

now composes a substantial portion of the computational power of the top 500 super-

computers. As these systems grow, barriers to increased performance arise from small

costs accumulated over innumerable iterations such as latency, the �xed cost of memory

accesses, which becomes signi�cantly larger when access requires communication between

two distant CPU processes. This thesis implements and analyzes swept time-space do-

main decomposition, a communication avoiding scheme for time-stepping stencil codes,

for GPGPU and heterogeneous (CPU/GPU) architectures. The GPGPU program sig-

ni�cantly improves the execution time of �nite-di�erence solvers for relatively simple

one-dimensional time-stepping partial di�erential equations (PDEs). The swept decom-

position code showed speedups of 2�9× compared with simple GPU domain decompo-

sitions and 7�300× compared with parallel CPU versions over a range of problem sizes,



2× 103�106 spatial points. However, for a more sophisticated one-dimensional system of

equations discretized with a second-order �nite-volume scheme, the swept rule performs

1.2�1.9× worse than a standard implementation for all problem sizes. The program tar-

geting heterogeneous systems with distributed memory patterns performs signi�cantly

better on both simple problems, speedup 4�18×, and more complex equation systems,

speedup 1.5�3×, over the range of problem sizes, 5× 105�107 spatial points. The program

targeting heterogeneous systems with distributed memory patterns performs signi�cantly

better on both simple problems, speedup 18�4×, and more complex equation systems,

speedup 3�1.5×, over a range of larger problem sizes. This demonstrates the bene�t of

GPU architecture and the contingent e�ectiveness of swept time-space decomposition for

accelerating explicit PDE solvers on current computational architectures.



©Copyright by Daniel J. Magee
June 8, 2018

All Rights Reserved



Swept time-space domain decomposition on GPUs and heterogeneous
computing systems

by

Daniel J. Magee

A THESIS

submitted to

Oregon State University

in partial ful�llment of

the requirements for the

degree of

Master of Science

Presented June 8, 2018

Commencement June 2018



Master of Science thesis of Daniel J. Magee presented on June 8, 2018.

APPROVED:

Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Daniel J. Magee, Author



ACKNOWLEDGEMENTS

This material is based upon work supported by NASA under award No. NNX15AU66A

under the technical monitoring of Drs. Eric Nielsen and Mujeeb Malik. We also gratefully

acknowledge the support of Nvidia Corporation with the donation of the Tesla K40c GPU

used for this research.

I would like to thank my committee for their patience, time and insight, my advisor,

Dr. Kyle Niemeyer, for introducing me to the expanding the world of computational

science, my labmates for sharing the graduate school experience with me, and Oregon

State University for fostering my growth and being an excellent value these last six years.

To my wife Amanda, thank you for your patience and support; thank you for sharing

my dreams. To Nora, thank you for arriving right on time and helping me realize con-

tinually just how lucky I am. To my parents John and Judy, thank you for supporting

me unconditionally through my many metamophoses.



TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept

time�space decomposition 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 GPU architecture and memory . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 First-order domain of dependence . . . . . . . . . . . . . . . . . . 12

2.4.3 Higher-order domain of dependence . . . . . . . . . . . . . . . . . 16

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Swept rule variants . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Applying the swept rule for explicit PDE solutions to heterogeneous computing

systems 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Swept time-space decomposition . . . . . . . . . . . . . . . . . . . 36

3.4.2 Primary data structure . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Program design features . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



TABLE OF CONTENTS (Continued)
Page

4 Summary and Conclusions 51

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53

Appendices 58

A GPU-based swept time�space decomposition . . . . . . . . . . . . . . . . . . 59



LIST OF FIGURES
Figure Page

2.1 The �rst two steps of the swept rule for a numerical scheme with a �rst-

order domain of dependence. Li/Ri refer to left/right arrays of node i,

which collect edge values shown with thick bordered dots [24]. . . . . . . . 13

2.2 The procedure for edge passing shown in Figure 2.1b. The global arrays

Li and Ri are represented by circles and squares, respectively, and the

numbers in those shapes represent the position of the value in the global

array. The axes describe the location of the value in the working array [24]. 14

2.3 Con�icts in the domain of dependence for discretizations requiring more

than two sub-timesteps per timestep [24]. . . . . . . . . . . . . . . . . . . 17

2.4 The �rst two steps of the swept rule for a numerical scheme with a second-

order domain of dependence [24]. . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Main loop of the starting kernel for the swept rule as illustrated by Fig-

ure 2.4a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Classic kernel for Kuramoto-Sivashinsky solver. Final and predictor step

functions can be written in C with __device__ keyword. . . . . . . . . . . 20

2.7 Performance comparison of the GPU heat equation programs [24]. . . . . 23

2.8 Performance comparison of the GPU Kuramoto�Sivashinsky equation pro-

grams [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Performance comparison of the GPU Euler equation programs [24]. . . . . 25

2.10 Performance comparison of CPU (MPI) and GPU (CUDA) programs for

the KS equation [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Skeleton for the lengthening method in the Classic program. The

states structure contains all the information to step forward at any point.

The user is only responsible for writing the eulerStep and pressureRatio

functions and accessing the correct members based on the timestep count 38

3.2 Skeleton for the flattening method in the Classic program. The sub-

timesteps are compressed to a step with a wider stencil. The two arrays

which alternate reading and writing are explicitly passed and traded in the

calling function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



LIST OF FIGURES (Continued)
Figure Page

3.3 Speedup of flattening compared to the same scheme using lengthening

applied to the KS equation on the GPU only. . . . . . . . . . . . . . . . . 39

3.4 Performance comparison of the hSweep heat equation programs. . . . . . . 44

3.5 Performance comparison of the hSweep Euler equations programs. . . . . 44

3.6 A map of the time cost per timestep of the Euler equations at 4 grid sizes.

The red dot signi�es the best performance. . . . . . . . . . . . . . . . . . . 47

3.7 A map of the time cost per time step of the heat equation at 4 grid sizes.

The red dot signi�es the best performance. . . . . . . . . . . . . . . . . . . 48



For Amanda and Nora



There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy.

- Hamlet, 1.5.167�8



Chapter 1: Introduction

In 2009 prominent high-performance computing (HPC) researchers submitted a call to

arms to the scienti�c programming community. Their paper launched a project based on

a concept that would come to be the mission of organizations committed to developing

the next generation of supercomputers: exascale [13]. The idea of exascale computing,

building software for systems capable of completing 1018 �oating-point operations per

second (FLOPS). This is a somewhat arbitrary distinction, but has served its purpose

by spurring action because it seemed futuristic yet imminent, a generation away but

possible.

The authors who launched the International Exascale Project [13] saw that software

for exascale computers would likely pose an even larger barrier to achieving this perfor-

mance benchmark than the immense technical challenges involved in constructing the

system itself and its components. While they envisage the integration of accelerators,

such as graphics processing units (GPUs), into HPC systems at exascale, they could not

have anticipated how rapidly GPU hardware and their environments have changed since

the middle of this decade. This rapid progress has seen Nvidia GPUs progress from

Kepler to Pascal architecture in four years and Volta architecture only one year later.

This hardware development entails increased programming capabilities in the CUDA

API (the general purpose parallel computing platform and programming model devel-

oped by NVIDIA for their GPUs), such as device synchronization between disparate

units and independent thread scheduling [31]. Since the GPU paradigm is a relatively

young technology compared to CPUs, rapid developments are possible and change the

way programmers interact with the technology. This presents a signi�cant problem for

programmers seeking to achieve the level of performance for which the hardware is de-

signed: often legacy code is only a few years old.

This thesis aims at providing direction for developing partial di�erential equation

(PDE) solvers that meet some of the main challenges of exascale computing, particularly

the increase in the latency cost of communication arising from the increasing physical size

of the compute system. It investigates swept time-space domain decomposition, a method



2

for avoiding the latency of repeated communication events, on GPUs and heterogeneous

distributed memory systems. The sample programs and libraries use CUDA and Message

Passing Interface (MPI), the standard programming library for large scale, multinode

parallel applications to parallelize the applications across GPUs and CPUs.

1.1 Motivation

The motivation for developing exascale scienti�c computing libraries is self-evident within

conventional scienti�c thought. Faster, bigger simulations make more e�cient turbines,

wings, engines, and HPC systems, and advance the cause of scienti�c understanding

in theoretical topics from LIGO to LHC. This argument is true, as evidenced by the

applications �rst in line to run on the SUMMIT supercomputer at Oak Ridge when it

boots up and claims the world's fastest title this summer. These applications range from

climate modeling and relativistic quantum chemistry to astro and bio physics [16].

I do not mean to propose that this line of reasoning and justi�cation is somehow insuf-

�cient. It is quite su�cient to warrant this, and many more intensive investigations. The

questions of energy, materials, climate, and particle physics are some of the fundamental

questions of our time and the greater modeling resolution of exascale systems promise

to illuminate corners of reality with unthinkable implications for our collective project.

The speci�c motivation for this thesis is to develop swept time-space decomposition to

accerlate large computational �uid dynamics simulations, in particular for aerospace ap-

plications; this is why the Euler equations for gas dynamics are chosen as representative

problems. However, I would like to o�er another, comparatively less scienti�c, though no

less rooted in human intellectual history, justi�cation for the work set out in this thesis.

It has been pro�ered by way of explanation that a GPU is akin to the �soul� of a

PC [22]. This may, and should, strike the reader as hyperbolic if taken at face value. But

the metaphor is a more powerful and prescient one than we would admit, or indeed, its

author likely intended.

Leaving out any supernatural implications, what is a soul? Of course, di�erent tradi-

tions have answered this question somewhat di�erently, but a materialist interpretation

of a common de�nition could fairly be parsed as: what separates humans from the rest of

known biology. We don't have the biggest brains, or the most neurons, elephants do [19].

So why are elephants not writing theses?



3

The likely answer is that a far greater proportion of elephant neurons are in the

cerebellum. Though they have 3× more neurons than humans, humans have 3× more

neurons in the cerebral cortex [19]. This would suggest that, in fundamental terms, being

human, building civilization, progressing to the point where we can imagine protecting

ourselves from the random slings and asteroids of the cosmos, is a matter of having the

right computational structures and the right software.

This may seem overly speculative and tenuous, but the third-largest supercomputer [38]

is being used by a large, serious, international project aiming to simulate the human

brain [28]. This HPC system contains 5320 Nvidia P100 GPGPUs. Current estimates

put the computational throughput needed for the project to be between 1�10 exaFLOPS.

Maybe we're too complex to be simulated or understood or modeled. It's certainly

possible that the scale of the problem exceeds computational performance. But we are

currently at the point where we can dream of attempting to understand and simulate

ourselves, and I can't think of any more fundamental motivation than that.

1.2 Objective

The main objective of this e�ort is to determine the viability of swept time-space decom-

position as a suitable method for time-stepping PDEs on heterogeneous computational

systems. In evaluating this objective, there are several ancillary objectives:

� Determine the best way to exploit the GPU memory hierarchy in a swept rule

program.

� Determine the best way to handle high-order, multi-step methods using the swept

rule.

� Determine the correct balance for assigning GPU work in heterogeneous environ-

ments.

� Determine the correct attributes of the main swept-rule concept for di�erent archi-

tectures.

� Determine if the swept rule provides performance bene�t. And if so, under what

conditions and for what problems?



4

Aside from the objectives investigating the swept rule, I have focused on developing an

extensible piece of software to facilitate the exploration of the aforementioned objectives.

The objective in this sense is to build a piece of software that remains useful after my

graduation. Software meeting this objective should have several features:

� Easy interface with which to add new equations and numerical methods

� Plain style for source code

� Simple work�ow to run code and view results

� Good documentation

� Easy to adapt for di�erent platforms

1.3 Outline of Thesis

This thesis is composed of two research papers suitable for submission to a peer-reviewed

journal dedicated to subjects pertaining to high performance computing, parallel comput-

ing, computational science, GPU and heterogeneous computing, or scienti�c computing.

Chapter 2 contains the �rst paper published by Journal of Computational Physics in

December 2017 [26]. This paper presents and analyzes a highly-optimized research code

applying the swept rule in one dimension to a single GPU. It presents several strategies

for exploiting the GPU memory hierarchy and assesses their e�ect on the overall per-

formance of the swept rule compared to a naive domain decomposition strategy. This

chapter explains the mechanics of the swept rule in one dimension in detail. Chapter 3

contains the second paper, submitted for publication, which builds on the �rst paper by

extending the GPU-only case to heterogeneous, multi-node, distributed memory systems.

It considers the tradeo�s between generality and optimization, and the nuances of work-

load balancing in one-dimensional equations while applying �ndings from the �rst paper.

Finally, Chapter 4 summarizes the conclusions of this project, addresses its shortcomings,

and outlines a direction for future work.



5

Accelerating solutions of one-dimensional unsteady PDEs with

GPU-based swept time�space decomposition

Daniel J. Magee and Kyle E. Niemeyer

Journal of Computational Physics

Vol. 357, 338�352, 2018.

https://doi.org/10.1016/j.jcp.2017.12.028

https://doi.org/10.1016/j.jcp.2017.12.028


6

Chapter 2: Accelerating solutions of one-dimensional unsteady PDEs

with GPU-based swept time�space decomposition

Abstract

The expedient design of precision components in aerospace and other high-tech indus-

tries requires simulations of physical phenomena often described by partial di�erential

equations (PDEs) without exact solutions. Modern design problems require simulations

with a level of resolution di�cult to achieve in reasonable amounts of time�even in ef-

fectively parallelized solvers. Though the scale of the problem relative to available com-

puting power is the greatest impediment to accelerating these applications, signi�cant

performance gains can be achieved through careful attention to the details of memory

communication and access. The swept time-space decomposition rule reduces communi-

cation between sub-domains by exhausting the domain of in�uence before communicating

boundary values. Here we present a GPU implementation of the swept rule, which mod-

i�es the algorithm for improved performance on this processing architecture by prioritiz-

ing use of private (shared) memory, avoiding interblock communication, and overwriting

unnecessary values. It shows signi�cant improvement in the execution time of �nite-

di�erence solvers for one-dimensional unsteady PDEs, producing speedups of 2�9× for

a range of problem sizes, respectively, compared with simple GPU versions and 7�300×
compared with parallel CPU versions. However, for a more sophisticated one-dimensional

system of equations discretized with a second-order �nite-volume scheme, the swept rule

performs 1.2�1.9× worse than a standard implementation for all problem sizes.

2.1 Introduction

High-�delity computational �uid dynamics (CFD) simulations are essential for developing

aerospace technologies such as rocket launch vehicles and jet engines. This project aims

to accelerate such simulations to approach real-time execution�simulation at the speed

of nature�in accordance with the high-performance computing development goals set



7

out in the CFD Vision 2030 report [35]. Classic approaches to domain decomposition for

parallelized, explicit, time-stepping partial di�erential equation (PDE) solutions incur

substantial computational performance costs from the communication between nodes

required every timestep. This communication cost consists of two parts: latency and

bandwidth, where latency is the �xed cost of each communication event and bandwidth

is the variable cost that depends on the amount of data transferred. Latency in inter-

node communication is a fundamental barrier to this goal, and advancements to network

latency have historically been slower than improvements in other computing performance

barriers such as bandwidth and computational power [34]. Performance may be improved

by avoiding external node communication until exhausting the domain of dependence,

allowing the calculation to advance multiple timesteps while requiring a smaller number

of communication events. This idea is the basis of swept time-space decomposition [3, 5].

Extreme-scale computing clusters have recently been used to solve the compressible

Navier�Stokes equations on over 1.97 million CPU cores [8]. The monetary cost, power

consumption, and size of such a cluster impedes the realization of widespread peta- and

exa-scale computing required for real-time, high-�delity, CFD simulations. While these

are signi�cant challenges, they also provide an opportunity to develop new tools that

increase the use of the available hardware resources. As the authors of CFD Vision

2030 note, �High Performance Computing (HPC) hardware is progressing rapidly and is

on the cusp of a paradigm shift in technology that may require a rethinking of current

CFD algorithms and software� [35]. Using graphics processing unit (GPU) hardware as

the primary computation device or accelerator in a heterogeneous system is a viable,

expedient option for high-performance cluster design that helps mitigate these problems.

For this reason, GPUs and other emerging coprocessor architectures are increasingly used

to accelerate CFD simulations [30].

GPU technology has improved rapidly in recent years; in particular, Nvidia GPUs

have progressed from Kepler to Pascal architecture in four years. This development

doubled and tripled peak single- and double-precision performance, respectively [32].

In addition, the presence of GPUs in clusters, such as ONRL's Titan supercomputer,

has become increasingly common in the last decade. These advances have driven the

development of software capable of e�ciently using and unifying the disparate architec-

tures [40]. Although the ultimate motivation of our work is accelerating the solution

of PDEs�particularly relevant to �uid �ow�on distributed-memory systems, in this



8

work we focused on a single GPU-accelerated node/workstation in the design of the al-

gorithms and associated software. By investigating the e�ectiveness of the swept rule on

a workstation, we provide results that can be applied to simulations on a single machine

as well as an initial framework for understanding the performance of the swept rule on

heterogeneous computing systems.

The swept rule operates on a simple principle: do the most work possible on the values

closest to the processor before communicating. In practice, this directive results in an

algorithm that advances the solution in time at all spatial points using locally accessible

stencil values at the previous timestep. Because the data closest to the processor is also

the least widely accessible, the strict application of this principle does not always provide

the best performance, but it is a useful heuristic for implementing the procedure and

analyzing its performance.

This study presents an investigation of the performance characteristics of three swept

rule implementations for a single GPU in a workstation. These procedures are tested

on three one-dimensional PDEs with numerical schemes of varying complexity and com-

pared with the performance of parallel CPU algorithms and unsophisticated GPU ver-

sions. The (next) Section 2.2 describes recent work on partitioning schemes for PDEs and

communication-avoiding algorithms, especially as applied to GPUs. Section 2.3 gives a

brief overview of the GPU architecture, particularly the thread and memory hierarchies.

Section 2.4 discusses the swept rule, and our adjustments to the original algorithm in

response to the details of GPU architecture. Section 2.5 describes the swept rule imple-

mentation in detail. In Section 2.6 we present the results of the tests and, lastly, draw

further conclusions in Section 2.7.

2.2 Related work

Alhubail and Wang introduced the swept rule for explicit, time-stepping, numerical

schemes applied to PDEs [2, 3, 5], and our work takes their results and ideas as its

starting point. The swept rule is closely related to cache optimization techniques, in

particular those that use geometry to organize stencil update computation such as par-

allelograms [37] and diamonds [27]. The diamond tiling method presented by Malas et

al. [27] is similar to the swept rule but uses the data dependency of the grid to improve

cache usage rather than avoid communication. Concepts such as stencil optimization



9

using domain decomposition on various architectures that are fundamental to this study

are explored by Datta et al. [12]. Their work explores comparisons between parallel

GPU and CPU architectures and tunes the stencil algorithm with nested domain de-

composition. The swept rule also has elements in common with parallel-in-time and

communication-avoiding algorithms.

Parallel-in-time methods [17], such as multigrid-reduction-in-time (MGRIT) algo-

rithms [15], accelerate PDE solutions with time integrators that overcome the interde-

pendence of solutions in the time domain, allowing parallelization of the entire space-time

grid. These methods calculate the solution over the space-time domain using a coarse

grid and iterate over successively �ner grids to achieve the desired accuracy. The use

of coarse grids in parallel-in-time methods reduces e�ciency and accuracy when applied

to nonlinear systems [3]. This shortcoming is intuitive: since chaotic, nonlinear systems

may suddenly change in time, and coarse grids are prone to aliasing, the required grid

granularity diminishes gains in performance. The swept rule arises from the same mo-

tivation, but does not seek to parallelize the computation in time or vary dimensions

during the process.

The swept rule does not alter the numerical scheme; it decomposes the domain

and organizes computation. That is, compared to a classic domain decomposition, the

swept rule performs the same operations in a di�erent order and location. In this way

communication-avoiding algorithms share many implementation details with the swept

rule. Recent developments in communication-avoiding algorithms for GPUs have gener-

ally focused on applications involving matrices such as QR and LU factorization. The

LU factorization algorithm presented by Baboulin et al. [7] is motivated by the increasing

use of GPU accelerators in large-scale, heterogeneous clusters. This method splits tasks

between the GPU and CPU, minimizing communication between devices. This allows the

communication and computation performed on each device to overlap, so all data trans-

fer occurs asynchronously with computation. We explore this approach�overlapping

data transfer with hybrid computation�in this article. The motivation and structure

of our study is comparable to the work of Anderson et al [6]. They developed methods

for arranging and tuning computation for single general-purpose GPU (GPGPU) in a

desktop workstation, without altering the basic QR factorization algorithm. Similarly,

this study focuses on adapting the swept rule to a single GPU. The swept rule is a strat-

egy for arranging the computational path of explicit numerical methods, and this work



10

seeks to design the data structures and operations used in that path to achieve the best

performance on GPUs.

2.3 GPU architecture and memory

The impressive parallel processing capabilities of modern GPUs resulted from architecture

originally designed to improve visual output from a computer. GPU manufacturers and

third-party authors [33, 31, 9, 36] have described the features of this architecture in

great detail, while others discussed general best practices for developing e�cient GPU-

based algorithms [11, 30]. Particular aspects of this architecture, such as the unique

and accessible memory hierarchy, are at the core of this work, so some explanation of its

relevant elements is necessary before describing the details of the implementation.

Programs that run on the GPU can be implemented using several software packages,

the most common of which are the OpenCL and OpenACC frameworks, and the CUDA

parallel computing platform. These packages use di�erent nomenclatures and are com-

patible with di�erent hardware types. In this project all programs use CUDA, which is

exclusively compatible with Nvidia GPUs; therefore, all descriptions of GPU hardware

presented here use the CUDA nomenclature. CUDA programs consist of functions, re-

ferred to as kernels, launched from a C/C++ host program. The CPU executes the host

code and speci�es the size and number of blocks when calling a kernel, the stream (queue)

in which the kernel will be launched, and the amount of shared memory to be allocated

per block at runtime. All threads in a warp�a group of 32 threads that execute as a

single-instruction multiple thread (SIMT) unit�must be in the same block, so for good

practice blocks should launch with some multiple of 32 threads.

The information presented here is valid for all Nvidia GPUs with compute capability

3.0 or higher (i.e., Kepler architecture or later). The device used in this study is a Tesla

K40c GPGPU, compute capability 3.5. This device contains 15 streaming multiproces-

sors, each capable of processing 64 warps of 32 threads, or 2048 total threads, at once [32].

A maximum of 16 blocks may concurrently reside on a streaming multiprocessor; blocks

may not be split between streaming multiprocessors. While each streaming multiproces-

sor can support 2048 resident threads, in practice their capacity is often lower because

each thread or block makes demands on limited memory resources�most notably the

shared memory and registers. Each streaming multiprocessor on the Tesla K40c has



11

48 kB of shared memory and 65536 registers available. Registers o�er the fastest access,

but are the most limited memory type and are private to each thread, but can be ac-

cessed by other threads in the same warp using shu�e operations available on devices

with compute capability 3.5 or higher. Shared memory is a controllable portion of the L1

cache accessible only to threads within a block. As a result, for a thread to read a value

stored in shared memory in a di�erent block, a thread with access to that value must

write the value to global memory where the reader thread has access. Global memory

is the slowest and most plentiful memory type, and where data copied from the host

program resides. Global memory stores all variables passed to a kernel and large arrays

declared therein.

Other memory types in the CUDA memory hierarchy include constant, texture, and

surface; of these, the work presented here only uses constant memory. Constant memory

is read-only, available to all kernels for the lifetime of an application, and quick to access

when all threads access the same location. This makes it a convenient and performance

conscious choice for storing constant values of the governing equations calculated at

runtime [31].

2.4 Methodology

2.4.1 Experimental method

The primary goal of this study is to compare the performance of the swept rule to a simple

domain decomposition scheme, referred to as Classic, on a GPU. A domain decompo-

sition scheme is a way of splitting up a large problem so tasks can be shared by discrete

workers working on distinct parts of the problem. In this case the decomposition scheme

divides the space-time domain of the PDE solution. We will compare the performance of

these methods by the time cost of each timestep, including the time required to transfer

data to/from the GPU. While encoding the Classic is relatively straightforward, �nding

the best approach for the swept rule on the GPU presents a more subtle problem.

In the original swept rule approach [3], the spatial domain is partitioned into inde-

pendent pieces called �nodes� that correspond to compute nodes on a distributed system

with private memory spaces. A major concern in adapting this nodal analogy to a single

GPU is the type of memory allocated for the working array, the container for the values



12

that are the solution to and the basis for each timestep. Several available approaches

exist to map the original analogy for a node to a single GPU; here, we will explore three

of them: Shared, Hybrid, and Register (which we will describe in detail in Section 2.5).

In all approaches we map one thread to one spatial point. Handling more than one

spatial point per thread would allow for larger nodes but would require more resources and

complicate the procedure without reducing thread idleness. Additional swept rule prop-

erties could be adjusted for potential implementation variants such as the data structure

to hold the working values, and the method to globally synchronize threads. However, for

the purposes of this study, we did not vary these attributes. In all cases in this study the

working array is a standard, one-dimensional C array with two �attened rows; and kernel

calls are implicitly synchronized by returning control to the queue in the host program.

2.4.2 First-order domain of dependence

A domain of dependence is a region on the space-time grid that can be completed by

a numerical scheme with some set of initial values. For the purposes of this project,

numerical schemes consist of stencil operations, where a value at a grid point is updated

based on the weighted contribution of values at grid points in the vicinity. A three-point

stencil uses values at neighboring grid points only, and the timestep of any numerical

scheme can be decomposed into a series of sub-timesteps that only require a three-point

stencil [39]. The numerical scheme de�nes the order of the domain of dependence: it

increases by one for every two sub-timesteps required per timestep. Therefore, a domain

of dependence is �rst-order if all sub-timesteps in the numerical scheme use a three-

point stencil, and intermediate values are required no more than two steps after they are

calculated. The initial incarnation of the swept rule presented by Alhubail andWang [3, 2]

decomposes multi-step timesteps and large stencils into sub-timesteps with a three-point

stencil. This regularizes the procedure and ensures that all equations and schemes can

be evaluated using a swept decomposition with a �rst-order domain of dependence, but

requires more memory to store the intermediate values that result from each sub-timestep.

In order to conserve limited private memory, for the GPU-based swept rule a �rst-order

domain of dependence is applicable to schemes that require two or fewer three-point

stencil sub-timesteps per timestep. Figure 2.1 shows the �rst two stages of the swept rule

using k = 2 nodes with n = 16 spatial points.



13

At the start of the �rst step, shown in Figure 2.1a, the initial conditions are passed

to the kernel and each node evaluates the solution at as many points as possible in the

space-time grid. The initial domain of dependence forms a triangle. The working array

stores the solutions as each node steps through time and is maintained in a fast memory

space private to node member threads. When each node cannot advance any further it's

necessary for each to pass one edge to a neighboring node and retain the values of the

0 5 10 15 20 25 30

Spatial point

0

2

4

6

8

10

12

14

16

S
ub

-t
im

es
te

p

(a) The �rst step of the swept rule. Values at t = 0 are split
between nodes 0 and 1, which compute solutions in their domain
of dependence, a triangle in the space-time plane. The edge values
are collected in global arrays L0/R0 and L1/R1.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

14

16

L
0
 -> R

0
R

0
 -> L

1
L

1
 -> R

1
R

1
 -> L

0

(b) The second step in the swept rule. The nodes pass their right
edge to the neighboring node. The passed values become the initial
left edge, and the left edge from the previous stage becomes the
right edge. Each node advances through their domain of depen-
dence, a diamond in space-time.

Figure 2.1: The �rst two steps of the swept rule for a numerical scheme with a �rst-order
domain of dependence. Li/Ri refer to left/right arrays of node i, which collect edge
values shown with thick bordered dots [24].



14

other edge. Figure 2.1b shows how the second step proceeds from the �rst using the edge

values.

For the nodes to communicate as Figure 2.1 illustrates, the values on the edges must

0 2 4 6 8 10 12 14 16

Shared array column index

0

1

S
ha

re
d 

ar
ra

y 
ro

w
 in

de
x

00 11

22 33

44 55

66 77

88 99

1010 1111

1212 1313

1414 1515

(a) At the end of a kernel (completion of an inverted triangle), the
working array is stored and passed from private memory to global
memory. The location shows the index of the working array in
(private) shared memory. The number in the shape refers to the
o�set global memory index where the working value is passed.

0 2 4 6 8 10 12 14 16

Shared array column index

0

1

S
ha

re
d 

ar
ra

y 
ro

w
 in

de
x

00 11

22 33

44 55

66 77

88 99

1010 1111

1212 1313

1414 1515

(b) Edges are reinserted to seed the inverted triangle of a new swept
cycle. The location shows the index of the working array in (pri-
vate) shared memory receiving the global memory value denoted
by the number.

Figure 2.2: The procedure for edge passing shown in Figure 2.1b. The global arrays Li
and Ri are represented by circles and squares, respectively, and the numbers in those
shapes represent the position of the value in the global array. The axes describe the
location of the value in the working array [24].



15

be passed to global arrays available to all nodes since any su�ciently fast memory loca-

tion is private to a subset of threads terminated on kernel exit. Consequently, any data

necessary to continue the computation must be shared between nodes using an interme-

diary container. The information needed to begin a new nodal cycle, including the values

retained by each node, must be read in from, and out to, global memory at the beginning

and end of each kernel, respectively. Figure 2.2a shows how the working array values are

stored and passed to the global arrays.

Figure 2.1b illustrates the reason the two edges are stored individually as Li and Ri:

only one of the edges is passed between nodes. After the �rst step, the right edge is

passed to its right neighbor node; the left edge is stationary. At the beginning of the

subsequent kernel, Li and Ri are swapped and reinserted into the working array to seed

the next progression with one data transfer event from global to private memory as shown

in Figure 2.2b. When the right edge is passed between nodes, node 0 is split across the

spatial boundary and must apply the boundary conditions at its center.

The swept rule allows the computation to advance by n timesteps with two, rather

than n, global memory accesses, where n is the number of threads per block (or the

number of spatial points per node). The procedure advances by passing values in the

alternating directions and zig-zagging the location of the nodes in this fashion until the

simulation is complete. Since the diamonds shown in Figure 2.1b do not store all the

values at a single timestep, the simulation can only output values when a complementary

triangle is computed and the �nal n-length local tier is returned. This kernel can only

be called after the values are passed to the left, so the results can only be read out every

nth timestep.

Although we already described the working array and showed in Figure 2.2 how

the relevant values are communicated between the nodes, it is instructive to outline

the performance concerns that motivate this arrangement. As Section 2.3 describes,

the number of resident threads on a streaming multiprocessor depends on the GPU

architecture and resources requested at kernel launch. For instance, storing every double-

precision value in the triangle shown in Figure 2.1a in shared memory in a kernel with

512 threads per block would require 8× 65792 = 514 kB of shared memory�this is over

100 times greater than the 48 kB limit for Nvidia GPUs with Kepler architecture. The

maximum number of threads per streaming multiprocessor would be limited to 128, which

would negatively impact program performance.



16

Figure 2.1a shows that the interior of the triangle is only needed to progress to the

next timestep, and that edges on even and odd tiers do not overlap in the spatial domain.

Thus, the triangle may be stored as a matrix with two rows, where the �rst and second

rows contain the even and odd sub-timesteps results, respectively. The interior values

are overwritten once they are used, and only the edge values remain. Figure 2.2a shows

the result of a local computation with this method. The last two values, the tips of each

triangle, are copied into both arrays.

At the start of the next kernel, the left and right arrays are inserted into the working

array to seed successive calculations as Figure 2.2b shows. The edges of the previous

cycle's �rst row are moved to the center, and the center of the current top row is now

left open for the �rst tier of the inverted triangle. Each row requires space for n + 2

values because two edge values are required on either side to complete the stencil for

the longest row where n values are computed. The computation proceeds by �lling the

empty two indices on the top row, overwriting the bottom row's middle four indices, and

so on. In contrast to the memory demands of storing the entire nodal computation, this

method uses only 2 × (n + 2) values. For a block with n = 512 threads, this requires

8× 1028 ≈ 8 kB. In general, a stencil with width k would require storing 2× (n+ k− 1)

values in the working array. By reducing the amount of shared memory to only 8 kB,

the kernel is less limited and achieves higher occupancy, the number of threads each

streaming multiprocessor is capable of handling simultaneously.

2.4.3 Higher-order domain of dependence

The �rst-order domain of dependence su�ces for relatively simple problems. However,

more complicated problems with elements such as nonlinear equations, discontinuities,

or higher-order derivatives require more sophisticated procedures. The original swept

rule program calculates and stores intermediate values at sub-timesteps for higher-order

schemes to avoid using larger stencils [3]. Breaking a timestep into a series of sub-

timesteps allows any numerical scheme for any equation of the same dimension to be

decomposed in the same way since all stages in the computation depend on the minimum

stencil, that is, only the neighbors of the current spatial point [39]. For example, a

second-order in time midpoint method applied to a fourth-order di�erential equation

would require four sub-timesteps per timestep. The �rst sub-timestep would �nd the



17

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

Timestep

Timestep

(a) First step of swept rule for discretization with four, three-point
stencil sub-timesteps per timestep.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

(b) Using four sub-timesteps per timestep will overwrite values
marked with an �×� before they are needed.

Figure 2.3: Con�icts in the domain of dependence for discretizations requiring more than
two sub-timesteps per timestep [24].

second derivative of the dependent variable so that the second sub-timestep, the midpoint

solution, would only require a three point stencil: the second derivative and initial values

at the neighboring spatial points. The third sub-timestep would �nd the second derivative

using the midpoint solution, and the �nal sub-timestep would complete the timestep

using the results of the second and third sub-timesteps on the three-point stencil and the

previous timestep solution at the current spatial point. This approach presents a storage

and data transfer problem on the GPU because values in the interior of the working array

are overwritten two sub-timesteps after they are calculated. These forgotten but required

values are marked with an �×� in Figure 2.3b.

Saving four values per tier would �x the problem, but requires a larger matrix in



18

shared memory, which would diminish occupancy and require more unnecessary values

to be passed between nodes. Figure 2.4 shows our solution to this problem: a �ve-

point stencil that requires two sub-timesteps per timestep�a predictor and a �nal step.

This �attens the triangle or diamond in the time domain and requires four values per

sub-timestep, but the two-row matrix may be used as described in Section 2.4.2 and illus-

trated by Figure 2.2 with minor adjustments. The same number of values are transferred

between nodes in each communication, but inevitably more communication events are

required to advance the solution. Conveniently, the predictor-corrector method ensures

that all odd tiers, the second matrix row, will contain predictor values, and the bottom

row will hold �nal values.

The problem that motivates our adjustment to the swept rule is the result of both the

midpoint method and the �ve-point stencil discretization. Either of these circumstances

alone would accommodate the method described in the previous section. Generally,

the decomposition must be adjusted in this fashion when there are more than two sub-

timesteps per timestep. It would need to be adjusted further for problems with more

than four sub-timesteps per timestep.

2.5 Implementation

2.5.1 Swept rule variants

While the order of the swept domain of dependence is a natural consequence of the

equations and numerical scheme, the computational hierarchy available on GPUs allows

this structure to be implemented in di�erent ways. To more thoroughly investigate the

e�ects of the swept rule, we consider three versions: Shared, Hybrid, and Register, and

compare them with a basic decomposition algorithm, Classic. In all of these programs,

one GPU thread is assigned to one spatial point.

The Classic algorithm is a naive GPU implementation of the numerical solution and

the baseline against which the e�cacy of the swept rule is measured. It advances one sub-

timestep per kernel call and uses global memory to store the working array. Figure 2.6

shows the structure of the procedure, and it is similar for all problems and discretizations.

We consider the Shared strategy for implementing the swept rule the most natural

way to map the analogy of CPU nodes to GPU architecture. It is applied to every test case



19

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

(a) First step in swept rule for second-order domain of dependence.
The working array is able to be folded and passed as shown in Fig-
ure 2.2

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

(b) Second step in the swept rule second-order domain of depen-
dence.

Figure 2.4: The �rst two steps of the swept rule for a numerical scheme with a second-
order domain of dependence [24].

and is considered the �default� swept rule GPU version for comparing the performance

of the GPU programs with their MPI-based CPU counterparts [2]. The Shared version

treats a block as a node and uses shared memory for the working array. Each block has

exclusive access to a shared memory space and may contain up to 1024 threads, so it has

access to fast memory and the capacity for various node sizes. There are some drawbacks

to this version: a high number of idle threads for sub-timesteps where the domain of

dependence contains relatively few spatial points, poor utilization of CPU resources, and

the fact that shared memory is not the fastest memory type [18].

The Hybrid strategy uses the same GPU procedure as Shared, uses the CPU to



20

__global__ void
upTriangle(const REAL *IC, REAL *right, REAL *left) {
//tid = threadIdx.x (bottom row idx),
//tidT = tid+blockDim.x (top row idx);
//tids and tidTs: stencil for each tidT and tid respectively.
//shareT = working array in shared memory
//Read initial data in from IC to shareT.

if (tid > 1 && tid <(blockDim.x-2)) {
shareT[tidT]=predictorStep(shareT, tids);
}

__syncthreads();
//4 is stencil length - 1
for (int k = 4; k<(blockDim.x/2); k+=4)
{

if (tid < (blockDim.x-k) && tid >= k) {
shareT[tid]+=finalStep(shareT, tidTs);
}

k += 2;
__syncthreads();
if(tid < (blockDim.x-k) && tid >= k) {
shareT[tidT]=predictorStep(shareT,tids);
}

__syncthreads();
}

//Read out the edges to left and right arrays.
}

Figure 2.5: Main loop of the starting kernel for
the swept rule as illustrated by Figure 2.4a.

__global__ void
classicKS(const REAL *ks_in, REAL *ks_out, bool final)
{
//Global Thread ID
int gid = blockDim.x * blockIdx.x + threadIdx.x;
//number of spatial points - 1
int lastidx = ((blockDim.x*gridDim.x)-1);
//Stencil indices.
int gids[5];

//True for all spatial points from periodic BCs.
#pragma unroll
for (int k = -2; k<3; k++) {
gids[k+2] = (gid + k) & lastidx;
}

//Final is false for predictor step, true otherwise.
if (final) {
ks_out[gid] += finalStep(ks_in, gids);
}

else {
ks_out[gid] = predictorStep(ks_in, gids);
}

}

Figure 2.6: Classic kernel for
Kuramoto-Sivashinsky solver. Final
and predictor step functions can
be written in C with __device__

keyword.

compute the node that is split across the boundary, as seen in Figure 2.1b, Transfers be-

tween the host and device are costly operations, but the devices can execute instructions

concurrently�so if the CPU can complete the boundary node before the GPU �nishes

the other nodes, no penalty arises. In this study, we apply this strategy to problems

with non-periodic boundary conditions as a way to mitigate the underutilization of the

CPU and the thread divergence that results from applying boundary conditions in a GPU

kernel.

The Register approach is applied to problems with periodic boundary conditions

because of the di�culty involved in applying boundary conditions using warp shu�e

functions. This implementation limits the number of points in a node to the size of a

warp, 32 threads (which has been constant over several iterations of Nvidia GPUs). In

this version the values are initially read from global memory to shared memory to the

registers. Passing the values to the intermediate shared memory is necessary because the

shu�e operations that trade registers between threads only operate on active threads in

the warp being called; if some threads are masked, they will be unable to supply the

necessary stencil values. Thus, data must be moved between memory levels at each tier



21

rather than once at the start and end of the kernel. This seriously limits the Register

approach, but it still warrants exploration since registers are the fastest memory type.

2.5.2 Test cases

We present three test cases to demonstrate the performance and functionality of the GPU-

based swept rule in one spatial dimension: the heat equation, Kuramoto�Sivashinsky

(KS) equation, and Euler equations for compressible �ow. Appendices A.2�A.4 contain

the full derivations of the procedures for the numerical solutions. First, we chose the

heat equation for its simplicity and familiarity. Here it is discretized with a �rst-order

scheme using forward di�erencing in time and central in space. Next, we selected the KS

equation to demonstrate the swept rule for higher-order, nonlinear PDEs. We discretized

the KS equation with second-order, central di�erencing in space, which requires a �ve-

point stencil, and a second-order Runge�Kutta method in time. Lastly we chose to solve

the Euler equations, a system of quasilinear, hyperbolic equations for describing com-

pressible, inviscid �ow. The conservative form of these equations are applied to the Sod

shock tube problem to demonstrate the application of the swept rule to a canonical CFD

problem involving discontinuities and several dependent variables. These equations are

discretized with a second-order, �nite-volume scheme in space and a second-order method

in time. The heat equation requires a �rst-order domain of dependence, while the KS

and Euler equations require second-order domains of dependence. These problems also

provide examples of various types of boundary conditions. The heat and Euler equations

are solved with re�ective and Dirichlet boundary conditions, respectively; therefore, the

boundary conditions must be imposed with control �ow. The KS equation uses periodic

boundary conditions, which is a convenient formulation for the swept rule that splits a

node across the boundary.

2.6 Results and discussion

All tests presented here were performed on a single workstation with a Tesla K40c GPU

and an Intel Xeon 2630-E5 CPU with eight cores and 16 potential threads. The GPU-

based swept rule algorithms and test cases were implemented 1DSweptCUDA v2 [25]. For

the results we present here, each program was executed in double precision with {2x | x ∈



22

N | 4 < x < 11} threads per block and {2x | x ∈ N | 10 < x < 21} spatial points. Each
run advanced 50,000 timesteps and recorded the average time per timestep; the initial

GPU memory allocations and data transfer between the host and device are included in

the overall time measurement. Then, we collected the best time per timestep for each

number of spatial points. We repeated this procedure �ve times and took the average

to obtain the results presented here. There were no signi�cant di�erences in the results

between the tests for the same con�guration.

Figures 2.7a and 2.8a show the execution time per timestep for all algorithms applied

to the heat and KS equations. When applied to these problems, the swept rule algorithm

outperforms the Classic procedure, and the GPU-only shared memory version, Shared,

is faster than the alternate swept rule versions. Figures 2.7b and 2.8b show the speedup

of the swept rule programs, or the ratio of time costs with the Classic version. Both

cases exhibit similar performance patterns: Shared generally provides a larger speedup for

small spatial domains (< 104 spatial points), but only a 2× speedup for large ones (> 105

spatial points). Figures 2.7a and 2.8a show the performance trends of the algorithms with

respect to the spatial domain size. Their time costs are insensitive to the spatial domain

at smaller domain sizes and grow linearly with increasing domain size after about 3× 105

spatial points. The similarity in the performance trends of the heat and KS programs

is intuitive; although the KS equation is nonlinear, fourth-order, and discretized with

a higher-order scheme, both are continuous, scalar equations and use �nite di�erence

schemes.

The speedup of the swept rule declines as the number of spatial points in the domain

increases, caused primarily by occupancy and the �xed cost of kernel launch. The occu-

pancy of a kernel is the number of threads that can reside concurrently on a streaming

multiprocessor at launch. This quantity is determined by the block size, since blocks

of threads are indivisible, and the resources requested by the kernel. The swept rule

requests more resources, speci�cally shared memory and registers, than Classic to store

the working array and carry out its procedure, which involves more steps. If more re-

sources are requested than are available to the streaming multiprocessors on the device,

the GPU launches waves of blocks. If the occupancy is limited by resource allocation,

the kernel must begin launching waves of blocks on domains with fewer spatial points.

Each wave must wait until the previous one completes before beginning; theoretically

this implies two waves will cost about twice as much as one. As the number of spatial



23

104 105 106

Number of spatial points

100

101

102
T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

Classic
Hybrid
Shared

(a) Time cost of GPU classic and swept do-
main decomposition algorithms.

104 105 106

Number of spatial points

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

Hybrid
Shared

(b) Speedup of swept rule programs with re-
spect to the Classic version.

Figure 2.7: Performance comparison of the GPU heat equation programs [24].

104 105 106

Number of spatial points

100

101

102

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

Classic
Register
Shared

(a) Time cost of GPU classic and swept do-
main decomposition algorithms.

104 105 106

Number of spatial points

1

2

3

4

5

6

7

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

Register
Shared

(b) Speedup of swept rule programs with re-
spect to the Classic version.

Figure 2.8: Performance comparison of the GPU Kuramoto�Sivashinsky equation pro-
grams [24].

points in the domain grows, more blocks are launched, and the di�erence in the number

of waves per kernel call increases more quickly for the swept rule program. This con-



24

clusion arises from the observation that the time cost of the swept rule versions begins

growing linearly at a smaller spatial domain size, about 2× 104 points, than Classic,

about 6× 104 points, as shown in Figures 2.7a and 2.8a.

By timing the launch of many empty kernels and taking their average, we measured

the �xed cost of kernel launch on the testing workstation to be about 4 µs. We conclude

that this cost dominates the performance of Classic at small problem sizes because it is

quite close to the cost of each timestep for spatial domains with less than 3× 104 spatial

points for both the heat and KS equations. This �xed cost accounts for less time cost at

larger spatial domain sizes where all kernels must launch several waves of blocks, so the

portion of the swept rule speedup from avoiding kernel launches becomes negligible, and

the overall speedup of the swept rule is reduced.

Each of the swept rule variants experiences these trends, but in all cases the Shared

version performs better. Figure 2.7 shows the heat equation test, where the Hybrid

version performs as well as Shared for large spatial domain sizes and 2�3 times worse for

small ones. The Hybrid version uses the same GPU kernels as Shared, but uses the CPU

to calculate the �rst node when it is split across the boundary. At smaller domain sizes,

the data transfer between the host and device dominates the cost of the Shared scheme.

At larger domain sizes, this cost drops in comparison with the overall costs, but at the

same time the thread divergence caused by handling boundary conditions also drops in

importance. Thus, the Shared and Hybrid methods perform similarly at larger domain

sizes (i.e., above 6× 104 spatial points).

Figure 2.8 shows the KS equation test, where, similar to the heat equation, the Shared

version performs better in all cases. While registers are the fastest memory type, because

of memory access rules the Register version must use a warp as a node, which limits

the domain of dependence to 32 spatial points. A Register program with n = 32 must

launch four times as many kernels to advance the same number of timesteps as Shared

with n = 128 (most often the best block size). Despite these di�erences, the Register

version exhibits a similar performance trend to Shared, which shows about 1.5× the

speedup of Register at all spatial domain sizes. The limit on node size results in a

constant four timesteps per cycle for the KS equation, which only reduces the number of

communication events by 1/8 compared with Classic.

In contrast to the previous test cases, Figure 2.9 shows that the classic decomposition

outperforms the swept rule at all problem sizes when applied to the Euler equations. This



25

104 105 106

Number of spatial points

101

102

103

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

Classic
Hybrid
Shared

(a) Time cost of GPU classic and swept do-
main decomposition algorithms. Hybrid and
Shared lines overlap.

104 105 106

Number of spatial points

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

Hybrid
Shared

(b) Speedup of swept rule programs with re-
spect to the Classic version.

Figure 2.9: Performance comparison of the GPU Euler equation programs [24].

result di�ers from the �ndings of Alhubail and Wang [3] for the swept rule implemented

only with MPI on CPUs, which produces roughly equivalent speedups for both the KS

and Euler equations. The GPU implementation of the swept rule for the Euler problem

involves much greater arithmetic intensity than the other problems, causing greater low-

level memory usage. This limits the performance of the swept scheme on a GPU more

than a CPU, reducing the bene�ts of the scheme over the classic approach within a single

GPU compared with the other problems. Those cases involve higher ratios of �oating-

point operations to memory accesses (both read and write). This will particularly degrade

performance as the intra-domain timesteps proceed and nodes become inactive.

With regard to the potential performance of the swept rule, this result is not encour-

aging for more complex problems in more dimensions. However, on a larger scale in a

cluster, where global memory is used for the working array and the communication to be

avoided is through a physical network between processors, we expect that the swept rule

will provide a bene�t for these types of problems.

Figure 2.10 compares the CPU-based KS equation programs with the GPU algo-

rithms, Classic and Shared. This CPU version is parallelized with MPI, similar to that

originally presented by Alhubail and Wang [2]. Figure 2.10 refers to the Shared program



26

104 105 106

Number of spatial points

100

101

102

103

104

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

ClassicCPU
SweptCPU
ClassicGPU
SweptGPU

(a) Time cost of CPU and GPU programs for
KS equation.

104 105 106

Number of spatial points

0

50

100

150

200

250

300

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

ClassicGPU
SweptGPU

(b) Performance improvement of GPU pro-
gram compared to the same algorithm on the
CPU.

Figure 2.10: Performance comparison of CPU (MPI) and GPU (CUDA) programs for
the KS equation [24].

as SweptGPU because it serves as the �default� swept rule version on the GPU for com-

parison with the CPU-based swept rule. The original CPU program was designed for

a distributed-memory cluster, but the Alhubail and Wang's original performance study

used only two processes on two CPUs [3]. The parallel CPU program was tested simi-

larly to the GPU programs: it was run on the same workstation with the same spatial

domain sizes and 2�16 threads. Here we compare the best results for each number of

spatial points, which usually occurred with 16 threads. This did not degrade the per-

formance compared with the original study; in fact, both CPU versions of the program

performed signi�cantly better, and for most spatial domain sizes the CPU-based swept

rule improved by about 6×. Since the test used up to eight times the number of threads,

this result supports the validity of repurposing this code and comparing the result with

the GPU versions.

Figure 2.10 illustrates the performance bene�ts of the GPU architecture more than

the swept rule itself. On small spatial domains (e.g., less than 1× 104 points) the GPU

can assign one thread to each spatial point and process all in a single wave. There it

improves performance over the CPU version by less than 50×, because the work does



27

not fully utilize the GPU. On larger spatial domains (e.g., more than 1× 104 points),

where the work completely utilizes the resources of the GPU, the performance increases

continue growing with problem size. The increase of the GPU programs' improvement

with respect to the number of points in the spatial domain inverts the trend of the swept

rule's improvement with respect to the Classic kernel. Both GPU algorithm types show

a speedup of about 5× for the smallest spatial domain. At the other end, the speedup

grows to about 300× for the swept and 100× for the classic domain decomposition.

2.7 Conclusions

In this study we compared the time per timestep of three swept rule time-space decom-

position implementations to a simple domain decomposition scheme, Classic, for GPU

accelerators. These programs were evaluated on a range of spatial domain sizes. The

Classic and Shared programs were also compared with their CPU-based counterparts

parallelized with MPI.

Generally, the swept rule performs better relative to Classic when the kernel launch

cost is a substantial element of the program cost and the spatial grid has fewer points

than concurrently launchable threads on the GPU. Once this is exceeded, the launch

cost penalty becomes negligible and greater resource usage penalizes the swept rule in

the form of reduced occupancy and reduced availability of the L1 cache, which is reserved

for shared memory. But, like the initial performance penalty for the Classic program,

the resource usage penalty does not scale and all programs see their time cost rise nearly

linearly with respect to spatial domain size after about 105 spatial points.

Both alternate swept-rule procedures, Hybrid and Register, performed slightly worse

than the Shared version. We attribute the failure of the Hybrid routine to improve per-

formance to improvements made in the handling of the boundary conditions in Shared

rather than the cost of host-to-device communication, which is handled with asynchronous

streams. Though the Hybrid version does not improve performance, it does not substan-

tially degrade it either, especially with large spatial domain sizes. Ultimately, Hybrid

computation seeks to solve a problem more e�cient to solve within the GPU paradigm.

The Register computation shows more promise but falls short because of the limited

node size.

This study also shows that implementing a Classic decomposition on the GPU for



28

an explicit numerical scheme is simple and may result in noticeable performance improve-

ments. This may be enough for many applications, but in performance-critical cases the

swept rule may further reduce execution time. The performance of the Classic decom-

position programs may be improved by altering the synchronization method. Implicit

synchronization incurs the cost of kernel launch at each sub-timestep, and this kernel

executes so quickly at small problem sizes that synchronization cost dominates the per-

formance of the program. Using o�-the-shelf, GPU-based synchronization [42] could also

provide performance bene�ts for the swept rule, and in particular Register, which is

also limited by kernel launch cost for small spatial domains.

The speci�c results presented here depend on the hardware used. A commercial

GeForce GPU with Kepler architecture would perform worse than the Tesla K40c, which

is designed for computation as opposed to actual graphics. Despite the signi�cant per-

formance increase shown here, the Tesla K40c is three-year-old technology. The current

state-of-the-art GPGPU with Pascal architecture, the Tesla P100, o�ers twice the K40c

base clock speed, nearly four times the number of streaming multiprocessors, and an

extra 16 kB of shared memory independent of the L1 cache. Additional dedicated shared

memory could dramatically impact the swept rule's performance for the Euler equations.

We predict that this device could at least halve the execution times shown here and

maintain insensitivity to problem size up to over 105 spatial points, potentially resulting

in speedups on the order of 103 over CPU parallel versions. Future GPU accelerators

could further improve performance, as well as devices with similar SIMT architectures

like Intel MIC/Xeon Phi.

Our future work will focus on further developing the swept rule for use on distributed

memory systems with heterogeneous node architectures and implementing the swept rule

in higher dimensions on the GPU. We expect the performance bene�ts to increase from

the swept rule when applied to a distributed memory system comprised of nodes with

CPUs and GPUs, where network communications incur more latency than intra-GPU

memory access. However, we anticipate the performance bene�ts of the swept rule will

diminish for higher dimensions; in two dimensions the swept rule requires three stages

of inter-node communication to advance one cycle, analogous to a single diamond in

one dimension. This, along with the associated increase in required memory allocation,

arithmetic intensity, and kernel launch events could limit the performance of the swept

rule as observed by Alhubail et al. [5]. In spite of these challenges, recent developments



29

such as grid-wide synchronization and increased shared memory capacity could aid the

performance of the swept rule and permit the exploration of additional design options.



30

Applying the swept rule for explicit PDE solutions to heterogeneous

computing systems

Daniel J. Magee and Kyle E. Niemeyer

Under review.



31

Chapter 3: Applying the swept rule for explicit PDE solutions to

heterogeneous computing systems

Abstract

Applications that exploit high performance computing (HPC) systems have become in-

valuable in academia and industry over the past two decades. The most important

development of the last decade in HPC from the hardware perspective has been the Gen-

eral Purpose Graphics Processing Unit (GPGPU), a class of massively parallel devices

that now contributes a substantial balance of the computational power in the top 500 su-

percomputers. As these systems grow, barriers to increased performance arise from small

costs accumulated over innumerable iterations such as latency, the �xed cost of memory

accesses, which becomes signi�cantly larger when access requires communication between

two distant CPU processes. The time-space decomposition rule is a communication-

avoiding technique for time-stepping stencil update formulas that attempts to sidestep a

signi�cant amount of latency costs. This work extends the swept rule by targeting hetero-

geneous, CPU/GPU architectures representative of current and future HPC systems. We

compare our approach to a naive decomposition scheme with two test equations using an

MPI+CUDA pattern on 40 processes over two nodes containing one GPU. We show that

the swept rule produces a 4�18× speedup with the heat equation and a 1.5�3× speedup

on the Euler equations using the same processors and work distribution. These results

demonstrate the e�ectiveness of the swept rule for di�erent levels of problem complexity

on compute systems that incur a substantial portion of their overall cost from latency.

3.1 Introduction

Computational �uid dynamics simulations are at the heart of technological development

in industries vital to high and rising standards of living around the world. Performing sim-

ulations at a level of �delity necessary for insight consumes more resources than individual

workstations can reasonably accommodate. As a result, they are generally performed on



32

clusters of many nodes comprising several multi-core CPUs�and increasingly with other

specialized �accelerator� co-processors. These heterogeneous computing systems have

become ubiquitous in areas of research dependent on large amounts of data, complex nu-

merical transformations, or densely connected systems of constraints. Addressing these

problems reveals a further horizon where new, more complex questions emerge. Steady

progress requires increasing development in large-scale computational systems; solutions

from hardware and software are required to supply the necessary throughput for de-

mand in numerous �elds, including several not known for their reliance on computational

science such as medical diagnostics, genetics, marketing and biology.

In many ways, progress has been sustained through the development of accelerators

or co-processors which augment the computational capabilities of the CPU, including

general purpose graphics processing units (GPGPU). These devices have grown in power

and complexity over the last decade, leading to an increasing reliance on them for energy-

e�cient �oating-point processing power in clusters [1]. However, as clusters grow in com-

plexity, computational power, and physical size, latency and bandwidth costs limit the

performance of applications that require regular inter-node communication. Bandwidth

is the amount of memory that can be communicated per unit of time, and latency is the

�xed cost of a communication event�the travel time of the leading bit over the connec-

tion. Traditionally, solving partial di�erential equations (PDEs) using explicit schemes

on clusters involves domain decomposition, with required internode communication of

small data packets for boundary information at every time step. The frequency of these

communication events renders their �xed cost (i.e., latency) a signi�cant barrier to the

scalability and robustness of stencil update algorithms on large multi-node computing

systems.

This project seeks to address, however nascently, two of the challenges on the route to

exascale computing systems identi�ed by Alexandrov in his editorial in a recent special

issue of the Journal of Computational Science: the need for �novel mathematical meth-

ods. . . to hide network and memory latency, have very high computation/communication

overlap, have minimal communication, have fewer synchronization points�, and �mathe-

matical methods developed and corresponding scienti�c algorithms need to match these

architectures [standard processors and GPGPUs] to extract the most performance. This

includes di�erent system-speci�c levels of parallelism as well as co-scheduling of compu-

tation� [1].



33

In this paper, we describe the development and performance analysis of a PDE solver

targeting heterogeneous computing systems (i.e., CPU/GPU) using the swept rule, a

communication-avoiding, latency-hiding domain decomposition scheme [3, 5]. Section 3.2

describes recent work on domain decomposition schemes with particular attention to ap-

plications involving PDEs and heterogeneous systems. Section 3.3 describes the questions

this study seeks to answer. Section 3.4 introduces swept time-space decomposition and

discusses the experimental hardware, procedure, and factors used to evaluate the pro-

gram performance. The section also analyzes and justi�es the design decisions we made

concerning elements of the program which we held constant but could potentially have

investigated. In Section 3.5 we present the results of the tests and describe the hardware

and the testing procedures used; lastly in Section 3.6 we draw further conclusions, de-

scribe future challenges in this project, and outline plans for prioritizing and overcoming

them.

3.2 Related Work

In our previous work [26] we investigated methods for exploiting the exposed GPU mem-

ory hierarchy to e�ectively execute swept time-space decomposition for stencil computa-

tion on a single GPU. Alhubail et al. [2, 3, 5] �rst developed the swept rule for CPU-based

operation one and two dimensions; Alhubail and Wang also demonstrated how complex

schemes can be decomposed into update formulas suitable for the swept rule [39]. We

use this technique, or �lengthening�, in the implementation of the swept rule discussed

in this work, and contrast it with another method for dealing with complex schemes:

�flattening�, which our previous GPU-only swept rule implementation used [26]. Sec-

tion 3.4.2 quantitatively compares the two techniques. In addition, Alhubail and Wang

applied this procedure to automatically generate C source code for solving the heat and

Kuramoto�Sivashinsky equations using the swept rule on CPU-based systems [4]. These

articles�those written by Alhubail and Wang and our previous study�comprise the

body of work on the swept rule to date, which this work expands upon.

Memory hierarchies are de�ned by a series of locations where memory is scarce and

quickly accessible to plentiful and ine�cient. By storing the working data in memory more

accessible to the processor as long as possible, communication-avoiding algorithms speed

up computation by reducing inter-process communication or global memory accesses in



34

parallel programs. Swept time-space decomposition is a type communication-avoiding

algorithm because it seeks to reduce the number of communication events between pro-

cessor and less accessible memory resources, unlike most communication-avoiding al-

gorithms though, it does not perform redundant communications. The heterogeneous

communication-avoiding LU factorization algorithm presented by Baboulin et al. [7] in-

vestigates the task splitting between the GPU and CPU and minimizes inter-device com-

munication. Their results show an appreciable bene�t by splitting the types of tasks

performed on the CPU and GPU, reducing overall communication, and e�ectively over-

lapping computation and communication.

Studies of stencil optimization techniques over the last decade often address concerns

closely related to the work presented here. Datta et al. [12] explored domain decompo-

sition with various launch parameters on various heterogeneous architectures and nested

domain decomposition within levels of the memory hierarchy. Malas et al. [27] previously

explored similar diamond tiling methods, which use the data dependency of the grid to

improve cache usage.

Swept time-space decomposition is also conceptually related to parallel-in-time meth-

ods [17], such as multigrid-reduction-in-time [15]. These algorithms overcome the inter-

dependence of solutions in the time domain, and parallelize the time dimension as if

spatial. The technique iterates over a series of �ne and course grids using an initial guess

for the entire solution domain, and e�ectively smoothes out the errors in the solution.

Historically, parallel-in-time methods were considered unsuitable for nonlinear problems

since the use of coarse grids substantially degraded e�ciency and accuracy [3]. However,

recent developments applying optimization and auto-tuning techniques have matched the

scaling of linear solvers [14]. Parareal is a parallel-in-time method that solves multiple

time steps in parallel on a �ne grid and corrects the results on a coarse grid until the so-

lution converges, resulting in a solution with the accuracy of the �ne grid. Wu and Zhou

proposed a new local time-integrator for this method that shows considerable promise

for accelerating convergence rates in fractional di�erential equations [41].

Distributed, remote, multi-node systems have become the centers of scienti�c com-

puting over the last decade, and have become increasingly heterogeneous in recent years.

Therefore, domain decomposition on these systems has received a good deal of recent

attention. In particular, Huerta et al. used methods from process engineering, includ-

ing experimental design and non-continuous linear models in an experimental parameter



35

space paradigm, to investigate the performance of a well known benchmark used to rank

HPC clusters, HPL, with respect to workload division on a heterogeneous system [20].

From our perspective, this is an underused technique in the �eld of HPC, which we could

apply to great e�ect in future studies with a more mature code base. However, at our cur-

rent stage, such a thoroughgoing analysis would not provide actionable insights beyond

what we have already gleaned from our comparatively simpler methods.

3.3 Objectives

This study concerns the construction and analysis of a program that applies swept time-

space decomposition to explicit stencil computations intended for distributed memory

systems with heterogeneous architecture, that is, computational operations are performed

by several CPUs and co-processors, in particular Nvidia GPUs. The software is written

in C++ and CUDA and uses the Message Passing Interface (MPI) library [10] to commu-

nicate between CPU processes and the CUDA API to communicate between the GPU

and the CPU.

While stencil computation is a relatively simple procedure, applying linear operations

to individual spatial points and their neighbors and the complexities introduced both by

a heterogeneous architecture and swept time-space decomposition require a signi�cant

number of design decisions. In this work we investigated the performance impact of

the most immediately salient and con�gurable decisions, and constrained other potential

variations with reasonable or previously investigated values. Our investigations focus on

answering the following questions:

1. Does the swept rule reduce time-cost under optimal launch bounds over the domain

of grid sizes?

2. How much work should we give to the GPU in a heterogeneous system?

3. How should we decompose the stencils in multi-step methods? (Further discussion

in Section 3.4.2)

4. Does the size of the domain of dependence substantially a�ect performance?



36

3.4 Methodology

3.4.1 Swept time-space decomposition

The swept rule exhausts the domain of dependence�the portion of the space-time grid

that can be solved given a set of initial values, referred to here as a �block��before passing

the grid points on the borders of each process. We refer to the program that implements

the swept rule as Swept, and the program that uses naive domain decomposition, that

is passing between processes at each timestep, is referred to as Classic. This way the

simulation may continue until no spatial points have available stencils; the required values

may then be passed to the neighboring process (i.e., neighboring subdomain) in a single

communication event. Both Alhubail and Wang, and Magee and Niemeyer, provide

detailed explanations and graphical depictions of the swept rule in one dimension, for

various architectures [3, 26].

The heterogeneous one-dimensional swept rule begins by partitioning the computa-

tional grid and allocating space for the working array in each process. In this case, the

working array is of type states, a plain old data C struct that contains the dependent

and intermediate variables needed to continue the procedure from any time step. Work-

ing array size is determined by the number of domains of dependence controlled by the

process, nBlocks, and the number of spatial points covered by a domain of dependence,

tpb (threads per block). Here we use �block� to represent a domain of dependence; it

comes from the GPU/CUDA construct representing a collection of threads. The pro-

gram allocates space for nBlocks × tpb + (tpb + 2)/2 spatial points and initializes the

�rst nBlocks× tpb+ 2 points. The initialized points require two extra slots so the edge

domains can build a full domain width on their �rst step. Interior domains in the process

share their edges with their neighbors; there is no risk of race conditions since even the

simplest numerical scheme requires at least two values in the state struct, which allows

the procedure to alternate reading and writing those values. Therefore, even as a domain

writes on an edge data point that its neighbor must read, the value the neighbor requires

is not modi�ed.

The �rst cycle completes when each domain has progressed to the sub-time step tpb/2

where it has computed two values at the center of the spatial domain. At this point each

process passes the �rst tpb/2 + 1 values in its array to the left neighboring process. Each



37

process receives the neighbor's bu�er and places it in the last tpb/2 + 1 slots; that is,

starting at the nBlocks × tpb index. It proceeds by performing the same computation

on the centerpoints, starting at global index tpb − 1 (adjusted index tpb/2 − 1), of the

new array and �lling in the uncomputed grid points at successive sub-time steps with a

widening spatial window until it reaches a sub-time step that has not been explored at

any spatial point and proceeds with a contracting window. Geometrically, the �rst cycle

completes a triangle, the second completes a diamond. When the diamond is complete,

it passes the last tpb/2 + 1 time steps in the array and inputs the received bu�er starting

at position 0. Now it performs the diamond procedure again, this time the global and

adjusted index are identical and it starts at index tpb/2− 1.

The procedure continues in this fashion until the �nal time step is reached, at which

point it stops after the expanding window reaches the domain width and outputs the

solution which is now current at the same time step within and across all domains and

processes. Therefore, the triangle functions are only used twice if no intermediate time

step results are output, the rest of the cycles are completed in a diamond shape.

3.4.2 Primary data structure

Implementing the swept rule for problems amenable to single-step PDE schemes is

straightforward, but dealing with more realistic problems often requires more complex,

often multi-step numerical schemes. Managing the working array and developing a com-

mon interface for these schemes, requires making design decisions that have substantial

impacts on performance.

One strategy for dealing with this complexity we term flattening since it �attens

the domain of dependence in the time dimension by combining several potential atomic

stages into single steps with wider stencils. This strategy is more memory e�cient for

the working array which contains instances of the primary data structure at each spa-

tial point, but it cannot easily accommodate di�erent methods and equations. It also

introduces additional complexity from parsing the arrays and requires additional register

memory for function and kernel arguments and ancillary variables.

In the new implementation shown here we use the lengthening strategy, also referred

to as �atomic decomposition�, which is instantiated as a struct to generalize the stages

into a user-de�ned data type. It requires more memory to be used in the primary data



38

// Q = {rho, rho*u, rho*E}
struct states {

double3 Q[2]; // State Variables
double Pr; // Pressure ratio

};

__device__ __host__
void stepUpdate(states *state, const int idx, const int

tstep)
{

int ts = tstep % 4; // 4 is number of steps in cycle
if (tstep & 1) pressureRatio(state, idx, ts);
else eulerStep(state, idx, ts);

}

__global__ void classicStep(states *state, const int
tstep)

{
int gid = blockDim.x * blockIdx.x + threadIdx.x + 1;
stepUpdate(state, gid, tstep);

}

Figure 3.1: Skeleton for the lengthening

method in the Classic program. The
states structure contains all the informa-
tion to step forward at any point. The
user is only responsible for writing the
eulerStep and pressureRatio functions
and accessing the correct members based
on the timestep count

__global__ void classicStep(const double *s_in, double
*s_out, bool final)

{
int gid = blockDim.x * blockIdx.x + threadIdx.x;
//number of spatial points - 1
int lastidx = ((blockDim.x*gridDim.x));
int gids[5];

for (int k = -2; k<3; k++) gids[k+2] = (gid + k) %
lastidx;

//Final is false for predictor step, true otherwise.
if (final) s_out[gid] += finalStep(s_in, gids);
else s_out[gid] = predictorStep(s_in, gids);
}

Figure 3.2: Skeleton for the flattening

method in the Classic program. The sub-
timesteps are compressed to a step with a
wider stencil. The two arrays which al-
ternate reading and writing are explicitly
passed and traded in the calling function.

structure; for instance, our flattening version of the Euler equations carried six doubles

per spatial point since the pressure ratio used by the limiter was rolled into the �attened

step. These strategies are described in Figures 3.1 and 3.2. By restricting the stencil

to three points, the lengthening method requires the pressure ratio to be stored and

passed through the memory hierarchy meaning the data structure carries seven doubles

per spatial point for the Euler equation.

To gauge the in�uence of this change in primary data structure, we compared the

performance of the Kuramoto�Sivashinksy (KS) equation, using a second-order Runge�

Kutta �nite-di�erence method in time and central di�erencing in space with periodic

boundary and initial conditions. A complete explanation of this method applied to the

KS equation can be found in the appendix of our previous paper [26]. We implemented

each combination of the classic and swept decomposition techniques and the flattening

and lengthening data structures. We used the KS equation because it was easy to adapt

to both styles due to its periodic boundary conditions, and since it requires four atomic



39

stages in the lengthened structure such that the versions are suitably di�erent.

104 105 106

Number of Spatial Points

3

4

5

6

7

8
Sp

ee
du

p

Swept
Classic

Figure 3.3: Speedup of flattening compared to the same scheme using lengthening

applied to the KS equation on the GPU only.

Figure 3.3 compares the performance of the memory storage techniques in an experi-

ment executed on a workstation with an Intel Xeon 2630-E5 v3 and an Nvidia Tesla K40c.

The Classic program using the flattening method using is compared to the same pro-

gram using the lengthening method and likewise for Swept. As Figure 3.3 shows, the

flattening method is faster than lengthening for both decomposition methods and

gets faster as the number of spatial points increases. There is not much di�erence in the

trends between swept and classic decomposition methods, but it does appear that the

less performative data structure a�ects the Swept program more. Much of the reason

that lengthening is substantially less performative is an artifact of GPU architecture,

so it is di�cult to generalize the results of this study to heterogeneous systems. GPU

memory accesses, from global and shared memory, are more sensitive to irregularities be-

cause of the parallel nature of the device as a whole; it is not designed to be used serially.

The extra memory requirements of the lengthening method also consume limited shared

memory resources on the GPU, which diminishes the L1 cache capacity used to accelerate

global memory accesses on Kepler-generation GPUs. While locality is a signi�cant issue



40

for e�ective CPU memory accesses, it has a larger impact on GPU performance.

We feel that it is important to present these �ndings so that others who implement

the swept rule will have a more thorough understanding of the tradeo�s inherent in the

program design choices across architectures. But, since the Swept and Classic algorithms

perform similarly compared to the flattening method, the conclusions we derive from

our experiments using the lengthening method remain valid. And we believe that, in

this case, the values that the lengthening method provides: extensibility and regularity

are of greater value than the absolute best performance.

3.4.3 Program design features

Our earlier implementation of the swept rule for GPUs [26] required creating separate

single-�le C++/CUDA programs for each problem. We have determined that this ap-

proach is insu�cient for enabling the support for further exploration that is essential

to the accurate analysis of highly architecture and problem dependent algorithms. Our

previous analysis showed that the performance characteristics of the GPU-based swept

rule depend on the boundary conditions, numerical method, and governing equation(s).

In this work we endeavor to create a convenient and reusable interface through which

other can reproduce our experiments, explore di�erent equations and numerical methods

to examine performance characteristics the performance characteristics of the swept rule.

We have created this interface by separating the domain decomposition and grid gen-

eration, and passing a map between the equation-speci�c part of the code, de�ned by

the user, and the generic part of the code. In practice, the user de�nes an initialization

procedure that de�nes any constant terms in the governing equation(s), e.g., the Fourier

number in the heat equation. The user is guaranteed to receive the standard grid vari-

ables, e.g., ∆x, ∆t, in the map along with any other values needed to de�ne the constant

terms, i.e., the thermal di�usivity for the heat equation. The user de�nes these non-

standard constant terms in a JSON �le passed to the program on the command line or

as command line key/value pair arguments. By de�ning these fundamental concepts in a

separate JSON �le, variables that de�ne the grid or material constants in the equations

can be rede�ned without the need to recompile.

This structure requires a solver interface that operates on every equation and nu-

merical scheme the same way, which in turn requires the use of a di�erent strategy for



41

decomposing more complex equations and domains. The clearest way to create a general

form for a user-de�ned equation is to oblige the user to decompose the numerical for-

mula into atomic stages, a series of steps requiring only three-point stencils as described

by Wang [39], and provide a step counter in the root function to de�ne the sequence

of stages. The user must also de�ne the data structure where results of each stage are

collected, this structure takes the form of a plain old data struct named states.

Our �rst study showed that shared memory is the most e�ective means of exploiting

the memory hierarchy for this application on this generation of GPUs [26]. We rely

on this conclusion here to again use the GPU characteristics to determine the size of

the domains of dependence. Each GPU thread is mapped to a single spatial point and

each CPU process, having only one available thread, traverses a number of domains in

serial. This limits the size of the domain of dependence to the allowable number of

threads in each block launched in the GPU kernel, which depends on the occupancy of

the most-restrictive kernel as determined by the shared memory and register resource

requirements.

Our approach organizes the available processors by assigning each GPU on a node to

one MPI process (i.e., CPU core) on the same node that has exclusive control over it;

that process also manages one domain on either side of the GPU subdomain. Thus, to

facilitate this, each MPI process comprises a positive, even number of subdomains. All

subdomains on a node must contain the same number of points, and all MPI processes

evaluate the same number of subdomains. Processes that control a GPU simply �contain�

additional subdomains equal to the GPU a�nity times the number of domains assigned

to an MPI process. For example, a domain of 160 points could be decomposed into

subdomains of 16 points on a node with four CPU cores and one GPU; each processor

would compute the time-stepping for two subdomains, while the MPI process controlling

the GPU comprises four subdomains in total (two on the CPU, and two on the GPU).

This corresponds to a GPU a�nity of one, since the GPU subdomain equals the CPU

subdomain sizes.

Assigning a GPU to a single process reduces complexity and avoids using the GPU

at the spatial boundaries where imposing boundary conditions causes thread divergence.

This is useful from a conceptual standpoint, even though we previously found that bound-

ary conditions only a�ect GPU performance in a minor way [26].

Our program uses the MPI+CUDA paradigm, and assigns one MPI process to each



42

core for the life of a program. We considered using an MPI+OMP+CUDA paradigm

by assigning an MPI process to each socket, and launching threads from each process

to occupy the individual cores, but recent work has shown that this approach rarely

improves performance on clusters of limited size for �nite volume or �nite di�erence

solvers [21, 23]. This conclusion has led widely used libraries, such as PETSc, to opt

against a paradigm of threading within processes [29].

3.4.4 Experimental method

We endeavor to address the questions presented in Section 3.3 by varying three primary

attributes of the decomposition: threads per block, GPU a�nity, and grid size. We

repeatedly executed our two test equations, the heat and Euler equations, over the ex-

perimental domain of these variables using Swept and Classic, exchanging borders every

sub-time step, decomposition methods. In our program implementing the swept rule in

one-dimension on heterogeneous systems, hSweep, threads per block is synonymous with

the size of the domain-of-dependence, but we refer to it using GPU terminology because

each domain is launched as a block of threads on the GPU. A block is an abstract group-

ing of threads that share an execution setting, a streaming multiprocessor, and access

to a shared memory space, a portion of the GPU L1 cache. hSweep uses the swept rule

to avoid communication between devices and processes and exploits the GPU memory

hierarchy to operate on shared memory quantities closer to the processor. Since this

multi-level memory scheme in�uences the swept-rule performance and GPU execution,

the resultant e�ects are di�cult to predict. The independent variables GPU a�nity and

grid size are more straightforward. The grid size is the total number of spatial points in

the simulation domain, and is provided by the user; however, the program revises this

number to provide a grid that �ts the other program settings that the grid must accom-

modate: the threads per block, GPU a�nity, and number of processes. The GPU a�nity

is the portion of the computational grid that is processed by the GPU, expressed as a

ratio of the number of domains-of-dependence assigned to the GPU to those assigned to a

single MPI process (on a CPU core). GPU a�nity, like the other experimental variables,

should be given as an integer, since we have determined that it is bene�cial for the GPU

to handle a larger portion of the overall grid than a single MPI process.

In our previous study of the swept rule [26], the experimental domain was clearly



43

de�ned by the particular properties of GPU architecture. Because a warp contains 32

threads and a block cannot exceed 1024 threads, here we constrained the number of

threads per block, which is also the width of the domain of dependence, in our experiments

to be a power of 2 from 32�1024. To enforce regularity, we constrained our experimental

problem size�the number of spatial points in the grid�to be a power of 2 larger between

1024 and 221.

Using CPU parallelism across 40 processes and GPU a�nity as a variable of interest

in this study, eliminates the potential for regularity in the experimental grid. To remedy

this, we relaxed the constraints on the experimental launch conditions so that the number

of threads per block is required to be a multiple of 32 from 32�1024 rather than a power

of two. In addition, at runtime the program uses the number of processes, threads

per block, GPU a�nity, and desired grid size to determine the closest grid size to the

requested value that accommodates the constraints. This results in di�erent grid sizes

for the same experimental settings. To assess the performance at various settings, we

interpolated each result to the requested grid size from the actual grid size.

The addition of GPU a�nity as an independent variable introduces further compli-

cation to the experimental domain. While our experiments are constrained by GPU

architecture in threads per block and by the number of processes and blocks in problem

size, we initially have no clear indication of what the experimental limits of GPU a�n-

ity should be�so we took an iterative approach. First, we ran a screening study and

executed the programs over a broad range of conditions: eight block sizes from 64�768,

11 GPU a�nities from 0�80, and four grid sizes from 5× 105�107. This showed us that

the best a�nity for all the programs would likely fall between 20�60 and that all threads

per block values could provide the best performance. This was somewhat disappointing,

since we had hoped to narrow the range for both GPU a�nity and threads per block

further in order to experiment on a �ner increment of grid size in a reasonable amount of

time. For the �nal experiment, we used the same block sizes, GPU a�nity values from

20�60 in increments of 4, and seven grid sizes over the same range.

In this study, we solve the one-dimensional heat equation using a �rst-order forward

in time, central in space method and Euler equations for a shock wave using a second-

order �nite-volume scheme with minmod limiter. Explanations of these methods can be

found in the appendix of our previous paper [26].



44

106 107

Grid Size

102

103

tim
e 

pe
r 

tim
es

te
p 

(u
s)

Classic
Swept

(a) Time cost of heat equation program at best
launch condition.

106 107

Grid Size

4

6

8

10

12

14

16

18

Sp
ee

du
p

(b) Speedup of swept version at best launch
condition.

Figure 3.4: Performance comparison of the hSweep heat equation programs.

106 107

Grid Size

104

tim
e 

pe
r 

tim
es

te
p 

(u
s)

Classic
Swept

(a) Time cost of Euler equation program at
best launch condition.

106 107

Grid Size

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25
Sp

ee
du

p

(b) Speedup of swept version at best launch
condition.

Figure 3.5: Performance comparison of the hSweep Euler equations programs.

3.5 Results

All programs executed at least 4000 timesteps; they were compiled with CUDA v8 and gcc

v4.8.5. All programs were launched with mpirun v3.1.4. Host-side memory manage-

ment, grid generation, and initial conditions are not included in the timing measurement,

but the measurement includes device-side global memory allocation and initial and �nal

memory transfer between the host and device.

We obtained the results presented here by running the Classic and Swept programs



45

on two nodes of the Oregon State University College of Engineering cluster. Each node

contains two sockets with Intel Xeon 2660-E5 v3 processors containing ten cores each

operating at 2.60GHz. An Nvidia Tesla K40m GPGPU is available to one of these nodes

through a PCI connection.

Figure 3.4a compares the computational time cost per time step of the Classic and

Swept algorithms applied to the heat equation. These results are generally consistent

with our expectations for several reasons. First, we observe that in all previous exper-

iments [26, 3], Swept achieves a period of strong speedup but reaches its asymptotic

performance at smaller grid sizes than Classic. For Classic this occurs relatively soon

after Swept, and the time cost of both algorithms with respect to grid size grows similarly

so the relative speedup of Swept declines as well although the absolute speedup remains

constant.

Second, although the minimum grid size in this study is about 100× times larger than

our previous study, and the maximum grid size is about 10× times larger, Figure 3.4b

shows a remarkably similar trend in the speedup of swept decomposition. In general the

speedup exhibited by the heterogeneous case is 2× the speedup at the analogous grid size

in the GPU-only case over the experimental range. The relative speedup of the swept rule

is expected since the latency that our program avoids is a much larger cost in internode

communication.

Figure 3.5 compares the time cost per timestep of the Classic and Swept algorithms

with the Euler equations and shows the same performance trends as the heat equation.

In this case, the communication costs that the program avoids are signi�cant enough that

swept decomposition provides a tangible bene�t despite the extra complexity, manage-

ment, and memory resources that it requires. This shows that swept time-space domain

decomposition is a viable method for complex equations in one dimension on systems

with substantial communication costs and various architectures.

Figures 3.6 and 3.7 show contour maps of the results of the complete experiment, as

described at the end of Section 3.4.4, on the equations. By creating similar maps in the

�rst stage of the experiment, we were able to narrow the range of possible best a�nity

values for all experimental settings and run an experiment with greater granularity in

the a�nity dimension. In the interest of most accurately describing the performance of

our program, we present the results of the �nal rather than the screening experiment.

Figure 3.6 shows interesting characteristics of the programs that vary by runtime



46

con�guration and decomposition method. Notably, these results show that for the Euler

equations, the Swept program often achieves best performance at GPU a�nities between

45�55 and often does best with 768 grid points in the domain of dependence, but per-

forms particularly poorly with 512 points. From other perspectives the performance

pro�le of the Swept Euler equations program appears quite regular, so a sudden drop

in performance followed by a substantial increase is unexpected. The consistency of the

in�uence of GPU a�nity allows further studies to explore more granular performance

characteristics. While the saddle along the threads per block axis is problematic for our

general recommendations, we also observe that the program consistently exhibits similar

performance from 192�384 threads per block.

Additionally, we observe from these maps that Swept produces a more orderly perfor-

mance pro�le than Classic. For grid sizes under 106 spatial points, the classic decom-

position technique produce peaks and valleys over a wide range of threads per block and

GPU a�nities. On larger grids, that chaos regularizes and the best performance occurs

with smaller grids and larger GPU a�nities. This suggests that we may have truncated

the GPU a�nity dimension prematurely in our experiments; however, from our observa-

tions we conclude that the best performance is well approximated by the experimental

grid and that the most performative con�guration overall will not lie far outside of the

grid if it does. The regularity we observe in the experimental grid for Swept programs

also extends in the grid size dimension as described by Figures 3.4 and 3.5 where swept

decomposition produces a nearly perfect power law curve for each problem. These �g-

ures show a signi�cant improvement for Swept programs over Classic ones. This relative

advantage diminishes with greater problem sizes, but for the heat equation, Figure 3.4b

shows an 18× speedup at 5× 105 spatial points falling to about a 4× speedup at 107.

Though we would emphasize that these results are representative of narrow experi-

mental conditions, architectures and design settings, the regularity of the Swept program

performance allows us to present �tted results in Table 3.1, corresponding to the data

points presented in Figures 3.4a and 3.5a, that may illuminate and guide future work

on this and similar topics.



47

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+05

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+07

3000

4500

6000

7500

9000

10500

12000

13500

15000

5000
6000
7000
8000
9000
10000
11000
12000
13000
14000

17500

20000

22500

25000

27500

30000

32500

35000

36000
42000
48000
54000
60000
66000
72000
78000
84000
90000

(a) Classic decomposition

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+05

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+07

1200

1400

1600

1800

2000

2200

2400

2600

2800

2400

2800

3200

3600

4000

4400

4800

5200

12000

13500

15000

16500

18000

19500

21000

22500

24000

26000

28000

30000

32000

34000

36000

38000

40000

(b) Swept decomposition

Figure 3.6: A map of the time cost per timestep of the Euler equations at 4 grid sizes.
The red dot signi�es the best performance.



48

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+05

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+07

0

800

1600

2400

3200

4000

4800

5600

6400

0
800
1600
2400
3200
4000
4800
5600
6400
7200

800

1600

2400

3200

4000

4800

5600

6400

7200

1800
2400
3000
3600
4200
4800
5400
6000
6600
7200

(a) Classic decomposition

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+05

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 5e+06

200 400 600
threads per block

20

25

30

35

40

45

50

55

60

G
PU

 A
ff

in
ity

GridSize: 1e+07

15
30
45
60
75
90
105
120
135
150

40

60

80

100

120

140

160

180

200

240

280

320

360

400

440

480

520

400

480

560

640

720

800

880

960

1040

(b) Swept decomposition

Figure 3.7: A map of the time cost per time step of the heat equation at 4 grid sizes.
The red dot signi�es the best performance.



49

Table 3.1: Coe�cients for power-law �t of grid size vs time per timestep (y = Axb) of
Swept performance at best runtime con�guration.

Equation A b R2

Euler 3.55× 10=3 0.976 0.999
Heat 1.08× 10=4 0.949 0.999

3.6 Conclusions

We examined the performance characteristics of design choices that must be made when

applying the swept rule to partial di�erential equations on heterogeneous computational

architectures using swept-time space decomposition. These design choices are: how many

threads per block�i.e., points per domain�to assign, what proportion of the total do-

main to assign to a GPU, and how to e�ciently and generally store the working array

throughout the simulation.

Our study aimed to answer the primary questions concerning these design choices

laid out in Section 3.3. First, we found that the best number of points to assign to each

domain varies with the algorithm, governing equation(s), and grid size. To achieve the

best performance on repeated similar runs, any program should be tested over a limited

number of time steps and tuned to the best result; however, in general we recommend

choosing a per-process domain size value from 96�384 that is a multiple of 32. This

is consistent with our previous results for the GPU-only implementation of the swept

rule. Next, we concluded that while a GPU a�nity is best chosen after a similar tun-

ing experiment, for more complex equations an a�nity from 40�60 performs well and an

a�nity from 20�40 does best for simpler problems. Next, there is a signi�cant tradeo�

between extensibility and performance associated with the primary data structure and

compression scheme applied to the working quantity in the simulation. We choose to

continue working with the lengthening method despite its performance drawbacks be-

cause it simpli�es development substantially and has facilitated the development of this

framework with which we can continue to develop codes and tests based on the swept

rule. Finally, although any conclusions drawn from an experiment on only two nodes are

limited, we showed a signi�cant relative improvement over our previous results for the



50

Euler equations using a �ne-tuned GPU-only program [26].

Future work in this project will continue adapting the swept rule to higher dimen-

sions, architecture types, and grid formations. For example, while Alhubail and Wang

demonstrated the two-dimensional swept rule for CPU-based clusters [5], we have not yet

extended this to heterogeneous systems.

In addition to adapting the algorithm to higher dimensions, we recognize the need to

develop new experiments that examine the scaling characteristics of the program as addi-

tional computational resources are added. We plan on and executing those experiments

on cloud systems like Amazon Web Services, Microsoft Azure, or Nvidia GPU Cloud. As

we conduct these experiments, we hope to gain greater insight into the factors a�ecting

performance and develop a more robust performance model for the swept rule.



51

Chapter 4: Summary and Conclusions

4.1 Summary

In this thesis, I have explored methods for constructing an e�cient swept time-space

decomposition implementation for solving partial di�erential equations with explicit nu-

merical methods. Two implementation stages have been presented: the �rst stage tar-

geted individual GPUs as the primary computational platform, and the second targets

heterogeneous computing systems, which use CPU and GPU processors together in a

system spanning several nodes. The results of the �rst stage informed the GPU memory

hierarchy used in the second stage where the GPU procedure is nested within the inter-

process, inter-device, and inter-node communication scheme of the broader heterogeneous

program. In the �rst stage, we created rigid, highly tuned programs for four implementa-

tion strategies the heat, Kuramoto�Sivashinsky, and Euler equations and tested these by

evaluating them at di�erent threads per block over the domain of experimental problem

sizes. In the heterogeneous experiments, we created more �exible code, used the best

implementation strategy for the GPU, and investigated the amount of work given to the

GPU as a multiple of the quantity of work given to a CPU process (i.e., the GPU a�nity).

In the two papers presented in this thesis, Chapters 2 and 3, I pointed out several

conclusions that seem particularly relevant to future e�orts in this area:

� The swept rule does provide a signi�cant performance bene�t but the bene�t de-

pends on the hardware and problem characteristics. More complex problems will

perform worse with the swept rule; larger, more latency-bound systems will per-

form better; and smaller grid sizes perform better up to a point. Comparing the

performance of the Euler equations in Chapter 2 and 3, there is a point where a

complex problem that does not see bene�t on one system will begin to see a bene�t.

� Run stencil and other easily parallelizable codes on GPUs. The performance ben-

e�ts for most long-running physics codes are substantial, to use a conservative

quali�er. Chapter 2 shows speedups on the order of 100× for large problems over



52

an MPI implementation occupying the entire current generation CPU. Part of this

speedup is due to the implementation, but the point stands that both the swept

and naive decompositions show large improvements on the GPU. The code example

in Section 2.5 shows how simply e�cient, naive decompositions can be realized on

the GPU.

� Shared memory is the most convenient and e�ective way to exploit the memory

hierarchy on the GPU. This point has only become more relevant since future gen-

erations of Nvidia GPUs have expanded shared-memory capacity and capabilities,

whereas the lower-level, faster registers remain the same.

� The best runtime con�guration settings vary substantially with the details of each

governing equation and algorithm; it is a good idea to perform a manual tuning

test before launching many iterations of a program for production. But, as a

general rule, choosing a domain of dependence size between 96�384 tend to perform

well across di�erent algorithms. GPU a�nities from 40�60work better on more

complicated problems while 20�40work better on simpler ones. This is to say,

running a program with 256 threads per block and a GPU a�nity of 40 will always

do reasonably well.

� There is a signi�cant tradeo� between extensibility and performance associated

with the primary data structure and compression scheme applied to the working

quantity in the simulation. If performance is a top-tier concern, a developer is

probably better o� writing their own solver. Even a naive decomposition on the

GPU, which is extremely simple, will outperform the swept rule with the right data

storage and time-stepping mechanism.

4.2 Future Work

Recommendations for future work on the swept rule implemented on heterogeneous sys-

tems are thoroughly described in Section 3.6. In addition, there are several areas where

the hSweep package can be improved or developed. In particular, implementing re�ective

boundary conditions, simplifying user input, and expression parsing for initial conditions

would substantially improve the usability of the package for both researchers and users.



53

In addition, a GPU-only swept rule package for two-dimensional problems would

be useful for practical use, since current GPUs are actually powerful enough to tackle

problems with the power of several cluster nodes, as we have seen in this project with a

GPGPU three generations behind the most recent release. This package would also be

useful for experimentation. The cooperative group feature introduced in CUDA 9 o�ers

synchronization across blocks for all active threads on a GPU. This would allow a swept

computation to occur entirely on the GPU without passing control back to the CPU

to implicitly synchronize the procedure. The e�ect of this strategy on this algorithm

remains to be seen, but, from experience, I would expect it to have a signi�cant positive

impact on performance especially for classic decomposition.



54

Bibliography

[1] Vassil Alexandrov. Route to exascale: Novel mathematical methods, scalable algo-
rithms and computational science skills. Journal of Computational Science, 14:1�4,
2016. The Route to Exascale: Novel Mathematical Methods, Scalable Algorithms
and Computational Science Skills.

[2] M. Alhubail and Q. Wang. KSIDSwept, git commit e575d73. https://github.

com/hubailmm/K-S_1D_Swept, 2015.

[3] Maitham Alhubail and Qiqi Wang. The swept rule for breaking the latency barrier
in time advancing PDEs. Journal of Computational Physics, 307:110�121, 2016.

[4] Maitham Alhubail and Qiqi Wang. Improving the strong parallel scalability of cfd
schemes via the swept domain decomposition rule. Grapevine, Texas, January 2017.
American Institute of Aeronautics and Astronautics.

[5] Maitham Makki Alhubail, Qiqi Wang, and John Williams. The swept rule for break-
ing the latency barrier in time advancing two-dimensional PDEs. arXiv:1602.07558
[cs.NA], 2016.

[6] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer. Communication-avoiding QR
decomposition for GPUs. In Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 48�58, May 2011.

[7] Marc Baboulin, Simplice Donfack, Jack Dongarra, Laura Grigori, Adrien Rémy, and
Stanimire Tomov. A class of communication-avoiding algorithms for solving general
dense linear systems on CPU/GPU parallel machines. Procedia Computer Science,
9:17�26, 2012.

[8] Iván Bermejo-Moreno, Julien Bodart, Johan Larsson, Blaise M. Barney, Joseph W.
Nichols, and Steve Jones. Solving the compressible Navier�Stokes equations on up
to 1.97 million cores and 4.1 trillion grid points. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC
'13, pages 62:1�62:10, New York, NY, USA, 2013. ACM.

[9] André R Brodtkorb, Trond R Hagen, and Martin L Sætra. Graphics processing unit
(GPU) programming strategies and trends in GPU computing. J. Parallel Distrib.
Comput., 73(1):4�13, 2013.

https://github.com/hubailmm/K-S_1D_Swept
https://github.com/hubailmm/K-S_1D_Swept
https://arxiv.org/abs/1602.07558


55

[10] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI message passing in-
terface standard. In Programming Environments for Massively Parallel Distributed
Systems, pages 213�218. Birkhäuser Basel, 1994.

[11] Felipe A Cruz, Simon K Layton, and L A Barba. How to obtain e�cient GPU
kernels: An illustration using FMM & FGT algorithms. Comput. Phys. Comm.,
182(10):2084�2098, October 2011.

[12] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil compu-
tation optimization and auto-tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC '08, pages
4:1�4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[13] Jack Dongarra, Pete Beckman, Patrick Aerts, Frank Cappello, Thomas Lippert,
Satoshi Matsuoka, Paul Messina, Terry Moore, Rick Stevens, Anne Trefethen, and
Mateo Valero. The international exascale software project: a call to cooperative
action by the global high-performance community. The International Journal of
High Performance Computing Applications, 23(4):309�322, 2009.

[14] R. D. Falgout, T. A. Manteu�el, B. O'Neill, and J. B. Schroder. Multigrid reduction
in time for nonlinear parabolic problems: A case study. SIAM Journal on Scienti�c
Computing, 39(5):S298�S322, 2017.

[15] Robert Falgout, Stephanie Friedho�, Tzanio Kolev, Scott MacLachlan, and Jacob B.
Schroder. Parallel time integration with multigrid. PAMM, 14:951�952, 12 2014.

[16] Michael Feldman. Oak ridge readies summit supercomputer for 2018 de-
but. https://top500.org/news/oak-ridge-readies-summit-supercomputer-

for-2018-debut/, November 2017. Accessed: 27 May 2018.

[17] Martin J. Gander. 50 years of time parallel time integration. In T Carraro, M Geiger,
S Körkel, and R Rannacher, editors, Multiple Shooting and Time Domain Decom-
position Methods, volume 9 of Contributions in Mathematical and Computational
Sciences, pages 69�113. Springer, Cham, 2015.

[18] Mark Harris. CUDA pro tip: Do the Kepler shu�e. https://devblogs.Nvidia.

com/parallelforall/cuda-pro-tip-kepler-shuffle/, February 2014. Accessed:
3 June 2016.

[19] Suzana Herculano-Houzel, Kamilla Avelino-de Souza, Kleber Neves, Jairo Por�rio,
Débora Messeder, Larissa Mattos Feijó, José Maldonado, and Paul R Manger. The
elephant brain in numbers. Frontiers in Neuroanatomy, 8:46, 2014.

https://top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://devblogs.Nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
https://devblogs.Nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/


56

[20] Y. A. Huerta, B. Swartz, and D. J. Lilja. Determining work partitioning on closely
coupled heterogeneous computing systems using statistical design of experiments. In
2017 IEEE International Symposium on Workload Characterization (IISWC), pages
118�119, Oct 2017.

[21] Dana A. Jacobsen and Inanc Senocak. Multi-level parallelism for incompressible
�ow computations on gpu clusters. Parallel Computing, 39(1):1�20, 2013.

[22] Kevin Krewell. What's the di�erence between a CPU and a GPU?
https://blogs.Nvidia.com/blog/2009/12/16/whats-the-difference-

between-a-cpu-and-a-gpu/, December 2009. Accessed: 23 May 2018.

[23] Fengshun Lu, Junqiang Song, Fukang Yin, and Xiaoqian Zhu. Performance eval-
uation of hybrid programming patterns for large cpu/gpu heterogeneous clusters.
Computer Physics Communications, 183(6):1172�1181, 2012.

[24] Daniel J. Magee and Kyle E. Niemeyer. Data, plotting scripts, and �gures for
�Accelerating solutions of PDEs with GPU-based swept time-space decomposition�,
May 2017.

[25] Daniel J. Magee and Kyle E. Niemeyer. Niemeyer-Research-Group/1DSweptCUDA
v2, May 2017.

[26] Daniel J. Magee and Kyle E. Niemeyer. Accelerating solutions of one-dimensional
unsteady PDEs with GPU-based swept time�space decomposition. Journal of Com-
putational Physics, 357:338�352, 2018.

[27] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes. Multicore-
optimized wavefront diamond blocking for optimizing stencil updates. SIAM Journal
on Scienti�c Computing, 37(4):C439�C464, 2015.

[28] Henry Markram. The human brain project. Scienti�c American, 306(6):50�55, 2012.

[29] Richard Tran Mills, Karl Rupp, Mark Adams, Jed Brown, Tobin Isaac, Matt Knep-
ley, Barry Smith, and Hong Zhang. Software strategy and experiences with manycore
processor support in petsc. SIAM Paci�c Northwest Regional Conference, October
2017.

[30] Kyle E Niemeyer and Chih Jen Sung. Recent progress and challenges in exploiting
graphics processors in computational �uid dynamics. Journal of Supercomputing,
67(2):528�564, February 2014.

[31] Nvidia Corporation. CUDA C programming guide, 2016. Version 8.0.

https://blogs.Nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.Nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/


57

[32] Nvidia Corporation. Whitepaper Nvidia Tesla P100. http://www.Nvidia.com/

object/pascal-architecture-whitepaper.html, 2016.

[33] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. GPU computing. Proc. IEEE, 96(5):879�899, January 2008.

[34] David A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71�75, October
2004.

[35] J P Slotnick, Abdollah Khodadoust, J J Alonso, D L Darmofal, W D Gropp, E A
Lurie, and D J Mavriplis. CFD vision 2030 study: A path to revolutionary compu-
tational aerosciences. NASA Technical Report, NASA/CR-2014-218178, NF1676L-
18332, March 2014.

[36] Duane Storti and Mete Yurtoglu. CUDA for Engineers: An introduction to High-
Performance Parallel Computing. Addison-Wesley, 2015.

[37] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter Seidel. Cache
oblivious parallelograms in iterative stencil computations. In Proceedings of the 24th
ACM International Conference on Supercomputing, ICS '10, pages 49�59, New York,
NY, USA, 2010. ACM.

[38] Swiss National Supercomputing Centre. �piz daint�, one of the most powerful
supercomputers in the world. https://www.cscs.ch/fileadmin/user_upload/

contents_publications/factsheets/piz_daint/FSPizDaint_2017_EN.pdf,
2017.

[39] Qiqi Wang. Decomposition of stencil update formula into atomic stages, 2017.

[40] F.D. Witherden, A.M. Farrington, and P.E. Vincent. PyFR: An open source frame-
work for solving advection�di�usion type problems on streaming architectures using
the �ux reconstruction approach. Computer Physics Communications, 185(11):3028�
3040, 2014.

[41] Shu-Lin Wu and Tao Zhou. Parareal algorithms with local time-integrators for time
fractional di�erential equations. Journal of Computational Physics, 358:135�149,
2018.

[42] S. Xiao and W. C. Feng. Inter-block GPU communication via fast barrier synchro-
nization. In 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS), pages 1�12, April 2010.

http://www.Nvidia.com/object/pascal-architecture-whitepaper.html
http://www.Nvidia.com/object/pascal-architecture-whitepaper.html
https://www.cscs.ch/fileadmin/user_upload/contents_publications/factsheets/piz_daint/FSPizDaint_2017_EN.pdf
https://www.cscs.ch/fileadmin/user_upload/contents_publications/factsheets/piz_daint/FSPizDaint_2017_EN.pdf


58

APPENDICES



59

Appendix A: GPU-based swept time�space decomposition

A.1 Availability of materials

The results for this article were obtained using 1DSweptCUDA v2 [25]. All �gures, and the

data and plotting scripts necessary to reproduce them, are available openly under the

CC-BY license [24].

A.2 Heat equation

The unsteady heat conduction equation without volumetric heat �ux is

∂T

∂t
= α∇2T . (A.1)

where T is temperature, t is time, and α is thermal di�usivity. In one dimension, this is

reduced to
∂T

∂t
= α

∂2T

∂x2
. (A.2)

Discretizing Eq. (A.2) with forward di�erencing in time and central in space yields

Tm+1
i − Tmi

∆t
= α

Tmi+1 + Tmi−1 + 2Tmi
∆x2

, (A.3)

where i is the spatial node index and m is the time index corresponding to time tm. This

is a �rst-order, explicit, �nite-di�erence approximation. To step forward in time, de�ne

the Fourier number, Fo = α∆t
∆x2

, where ∆t is the timestep size and ∆x is the spatial grid

size, and solve for temperature at the next timestep:

Tm+1
i = Fo(Tmi+1 + Tmi−1) + (1− 2Fo)Tmi . (A.4)

In this study the approximation is evaluated with insulated boundary conditions at both



60

ends and n spatial points:

T−1 = T1 and Tn+1 = Tn−1 . (A.5)

A.3 Kuramoto�Sivashinsky equation

The Kuramoto�Sivashinsky equation is a nonlinear, fourth-order, one-dimensional un-

steady PDE:

ut = −(uux + uxx + uxxxx) = −
(

1

2
u2
x + uxx + uxxxx

)
, (A.6)

where u is the dependent chaotic variable (e.g., �uid velocity). It is discretized similarly

to the heat equation, as shown in Eq. (A.7), with central di�erencing in space. In this

case, decomposing the fourth spatial derivative requires a �ve-point stencil:

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+
umi+1 + umi−1 + 2umi

∆x2
+

umi+2 − 4umi+1 + 6umi − 4umi−1 + umi−2

∆x4

)
. (A.7)

The chaotic nature of the problem necessitates a higher-order scheme overall; there-

fore, an explicit, second-order Runge�Kutta scheme, also known as the midpoint method,

is applied to the time domain.

Let the right-hand side of Eq (A.7) be f(u(x, t)), then the predictor solution is found

at u
m+1/2
i :

u
m+1/2
i = umi +

∆t

2
f(umi ) . (A.8)

Then f(u
m+1/2
i ) may be evaluated and added to umi to obtain um+1

i :

um+1
i = umi + ∆tf(u

m+1/2
i ) . (A.9)

The problem demonstrated here uses periodic initial and boundary conditions. That

is, the stencil at point 0 includes points n and n− 1 and the initial condition is periodic

and continuous at the spatial boundaries.



61

A.4 Euler equations (Sod shock tube)

The Sod shock tube problem is a one-dimensional unsteady compressible �ow problem

based on the nonlinear, quasi-hyperbolic Euler equations:

∂Q

∂t
+
∂F

∂x
=
∂Q

∂t
+ J

∂Q

∂x
= 0 (A.10)

where J is the Jacobian matrix,

Q =


ρ

ρu

ρe

 , (A.11)

F =


ρu

ρu2 + P

u(ρe+ P )

 , (A.12)

ρ is density, e is internal energy, u is velocity, P is pressure given by

P = (γ − 1)(e− ρu2

2
) , (A.13)

and γ = 1.4 is the heat capacity ratio of air.

The initial boundary conditions, given in Eq. (A.14), are constant values for the state

variables on either side of a diaphragm separating two parcels of the same �uid. The

spatial boundary conditions are these values at their respective ends of the tube:
ρL

uL

PL

 =


1.0

0.0

1.0

 and


ρR

uR

PR

 =


0.125

0.0

0.1

 . (A.14)

The equation is discretized using a second-order, �nite-volume scheme with cell-

centered values. The �rst step in the solution is evaluating the pressure ratio at the

current timestep over a �ve-point stencil

Pr,i =
Pi+1 − Pi
Pi − Pi−1

at i− 1, i, i+ 1 (A.15)



62

This value is used with a minmod limiter to compute reconstructed values on both

sides, L and R, of the current cell boundaries at i± 1/2:

QLn =

QLo + min(PL
r ,1)

2 ∗ (QRo −QLo ), if 0 < PLr <∞

QLo , otherwise.
(A.16)

QRn =

QRo + min((PR
r )−1,1)
2 ∗ (QLo −QRo ), if 0 < 1

PR
r
<∞

QRo , otherwise.
(A.17)

where subscript n refers to the reconstructed, or new, values on the edge of the interface

and o refers to the original values. For example, at i − 1/2 the original values on the

left side of the interface are at i − 1. These reconstructed boundaries do not represent

solutions for any grid cell; they are temporary values that interpolate the solutions.

Once we have the reconstructed values on either side of the interface, we can calculate

the �ux at that cell boundary with

Flux =
1

2
∗ (F (QR) + F (QL) + rsp ∗ (QL −QR)) (A.18)

where F (Q) is given by Eq. (A.12) and rsp is the spectral radius, the largest eigenvalue

of the Jacobian matrix J .

The spectral radius can be found with the Roe average Q at the interface

Qsp =


ρsp

usp

esp

 =


√
ρL ∗ ρR√

ρL∗uL+
√
ρR∗uR√

ρL+
√
ρR√

ρL∗eL+
√
ρR∗eR√

ρL+
√
ρR

 (A.19)

and Psp with Qsp using Eq. (A.13).

The spectral radius is given by

rsp =

√
γ ∗ Psp
ρsp

+ |usp| (A.20)

Repeating this process at both interfaces yields all required values to solve for a



63

timestep

Qn+1
i = Qni +

∆t

∆x
(Flux

n+1/2
i+1/2 − Flux

n+1/2
i−1/2 ) (A.21)

The results presented here for the Euler equations use a second-order Runge�Kutta

scheme in time, which can be obtained with the same procedure shown in Eqs. (A.9)

and (A.8).




	Introduction
	Motivation
	Objective
	Outline of Thesis

	Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept time–space decomposition
	Introduction
	Related work
	GPU architecture and memory
	Methodology
	Experimental method
	First-order domain of dependence
	Higher-order domain of dependence

	Implementation
	Swept rule variants
	Test cases

	Results and discussion
	Conclusions

	Applying the swept rule for explicit PDE solutions to heterogeneous computing systems
	Introduction
	Related Work
	Objectives
	Methodology
	Swept time-space decomposition
	Primary data structure
	Program design features
	Experimental method

	Results
	Conclusions

	Summary and Conclusions
	Summary
	Future Work

	Bibliography
	Appendices
	GPU-based swept time–space decomposition

