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Introduction and Motivation

The future of CFD

Challenges
Unsteady Turbulent Flow
Simulations Including
Transition and
Separation
Multidisciplinary,
Multiphysics Simulations
and Frameworks [1]

Turbulent eddies, flowing from left to right in a
shock wave (uses 1.7 million cores) [2].
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Introduction and Motivation

How do we get there?

High performance computing - HPC

advances in HPC hardware systems and related
computer software are critically important to the
advancement of the state of the art in CFD
simulation

The effectiveness and impact of CFD on the design
and analysis of aerospace products and systems is
largely driven by the power and availability of
modern HPC systems.

- NASA CFD Vision 2030 [1]
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Introduction and Motivation

Exascale

Exascale is the current goal of HPC development
1018 FLOPS (Floating point operations per second)

4600 nodes, 25,000 Nvidia V100 GPUs.
200 petaFLOPS double-precision.
3 exaFLOPS mixed (single and half-precision) [3].

0Summit Supercomputer - Oak Ridge TN (Soon to be world #1)
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Introduction and Motivation

Latency, an Exascale Challenge

As systems get larger, latency increases
TimeCost = f(flops, bandwidth, latency)

Latency and Bandwidth
“Bandwidth is money, Latency is physics.”
Latency, fixed cost of memory access, is related to distance.
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Introduction and Motivation

HPC becoming More heterogeneous

Heterogeneous: A system containing more than one processor

architecture.

This is from 2012, by 2015 it was 100.

0https://blogs.nvidia.com/blog/2012/07/02/
new-top500-list-4x-more-gpu-supercomputers
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Introduction and Motivation

Why are GPUs good for computing?

We realized that what is good
for graphics is good for many
applications.
Many weak cores that process
simple tasks quickly.
The Memory hierarchy is
exposed so we can assign values
to cache and registers.
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Introduction and Motivation

Thread Hierarchy

The simplicity restricts and liberates the hardware

Threads are weak
because cores are weak.
Branching is penalized.
Threads are not tied to
cores but to groupings
called blocks.
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Introduction and Motivation

What Is To Be Done?

We need software to exploit the diverse architecture, but...

It gets complicated
quickly.
There are many
variables just on the
hardware side.
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Introduction and Motivation

Domain Decomposition

Definition
Domain decomposition is the act of splitting up a large grid among several
parallel work units, essential to parallelizing grid domain problems.

0https://stomp.pnnl.gov/estomp_guide/44304376.stm
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Introduction and Motivation

Scope of Work

Implement and analyze the performance of a swept solver on a GPU
and a GPU/CPU HPC system.
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Related Work

Problem: Parallelizing Dependency

A simple (classic) decomposition:

Initial conditions - Processes know the values at the locations they are
responsible for and extra values at the edges

Step forward - Process calculates next values at all spatial points
available
Pass Edge to neighbor process each sub-timestep.
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Related Work

Solution: Parallel-in-Time

MGRID
Parallel-in-time treats the entire space-time domain as independent, begins
with an initial guess, solves at various grid granularities, converges on
solution.

0computation.llnl.gov/projects/parallel-time-integration-multigrid
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Related Work

Similar solution: The Swept rule

The Swept Rule CPU Results from Alhubail et al. [4]

Kuramoto-Sivashinsky Equations Euler Equations
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Swept Decomposition
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Swept Decomposition

The Swept Rule as a rule

Simple Principle
Do as much work with the data closest to the processor as possible.

Could also say: it fully exploits the domain of dependence at all grid points.
Domain of Dependence: The region of the space-time grid that can be
calculated from the initial condition.

1D - Triangle
2D - Pyramid
3D - Hypercube
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Swept Decomposition

The Swept Rule as a method
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Test Details

Heat

Finite Difference | Time: Forward, Space: Centered

∂T

∂t
= α∇2T .

Tm+1
i = Fo(Tm

i+1 + Tm
i−1) + (1− 2Fo)Tm

i .
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Test Details

Kuramoto-Sivashinsky (KS)

The Kuramoto–Sivashinsky equation is a nonlinear, fourth-order,
one-dimensional unsteady PDE.
Finite Difference | Time: Midpoint, Space: Centered

ut = −(uux + uxx + uxxxx) = −
(
1
2
u2
x + uxx + uxxxx

)
,

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+

umi+1 + umi−1 − 2umi
∆x2 +

umi+2 − 4umi+1 + 6umi − 4umi−1 + umi−2

∆x4

)
.
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Test Details

Euler Equations

Finite Volume | Time: Midpoint, Space: Minmod Limited

∂Q

∂t
+
∂F

∂x
= 0

Q =


ρ
ρu
ρe

 ,F =


ρu

ρu2 + P
u(ρe + P)

 ,

Qn+1
i = Qn

i +
∆t

∆x
(Fluxn+1/2

i+1/2 − Fluxn+1/2
i−1/2 )
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Test Details

Hardware

Same Hardware CPU and GPU both studies

Tesla K40:
Global Memory (GB) 12
Shared Memory (kB/Block) 48
Max Threads Per Block 1024
Compute Capability 3.5
SM Count 15
ClockRate (MHz) 745
CudaCores 2880

Intel Xeon 2630-E5:
8 Cores
2.5 GHz
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1st Study

What we want to know

Which GPU memory strategy is best for the swept rule?
Is swept decomposition effective compared to a simple (Classic)
scheme on the GPU?
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1st Study

1st Study Test Procedure

Performance Metric
Average time per timestep.

Test Run Details
CUDA 8, Double Precision
32 to 1024 threads per block by powers of 2.
1024 to 1048576 spatial points by powers of 2.
50,000 timesteps

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 27 / 56



1st Study

Implementation choices

Classic: One sub-timestep at a time.
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Shared: Shared Memory - performs all computation on GPU
Hybrid: Passes edge domains to CPU to avoid boundary conditions.
Register: Register memory - shuffled between warp threads.
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1st Study

Heat Equation

Best Run at each problem size
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1st Study

KS Equation
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1st Study

Euler Equation
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1st Study

KS Equation CPU vs GPU
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1st Study

Takeaways

Shared memory is generally the most effective storage strategy.
GPUs are faster than CPUs for these types of problems.
The swept rule becomes less effective as problem complexity grows.
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Heterogeneous Swept Rule
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Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Allocate
tpb ∗ (nDomains + .5)
slots per process

Constraints
Each process receives an even number of blocks.
GPUs communicate with a single process, and computes blocks are
embedded in that process.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Gather items to pass
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Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Set new starting point
for domains
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Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Fill in the voids
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Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

March forward to next
triangle

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Design Point: Software Pattern

MPI: Message Passing Interface - Industry standard for distributed
memory paralleization.
OpenMP: Open Multiprocessing - Launches threads in shared
memory space
CUDA: API for GPU execution

Should we parallelize within sockets with OpenMP? [5]

No, literature shows little evidence of utility [6, 7].
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Heterogeneous Swept Rule

There’s a catch

Anything other than the simplest method (FTCS, Leapfrog) will overwrite
values needed to continue the computation.
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Heterogeneous Swept Rule
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Heterogeneous Swept Rule

Solution 1: Flattening

Multi-step methods can often combine steps in with wider stencil.
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Heterogeneous Swept Rule

Solution 2: Lengthening (Atomic Decomposition) [8]

All explicit schemes can be decomposed into three-point stencil
steps

// Q = {rho, rho*u, rho*E} Euler
struct states {
double3 Q[2]; // State Vars
double Pr; // Pressure ratio

};

// KS
struct states {
double u[2]; // Velocity
double uxx; // Jerk

};

// Heat
struct states {double T[2];};
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Heterogeneous Swept Rule

Long Flat KS Discretiztions

Finite Difference | Time: Midpoint, Space: Centered
Using a 5 point stencil

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+

umi+1 + umi−1 − 2umi
∆x2 +

umi+2 − 4umi+1 + 6umi − 4umi−1 + umi−2

∆x4

)
.

But we can treat uxxxx as ∂2uxx
∂x2

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+

(u + uxx)mi+1 + (u + uxx)mi−1 − 2(u + uxx)mi
∆x2

)
.
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Heterogeneous Swept Rule

Flattening vs Lengthening

Tested under same conditions as GPU-only with Kuramoto-Sivashinsky
equation.
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The flexibility of Lengthening on the GPU comes at a substantial cost.
We still use the lengthening strategy for its universal qualities in the
heterogenous case.
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2nd Study

New Questions

How much work should we give to the GPU in a heterogeneous
system?
Which strategy for higher order methods is faster?
Is swept decomposition more effective for more complex equations on
heterogeneous architecture?
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2nd Study

Heterogenous Changes

Use what we learned last time.

New Conditions
Shared is the best GPU-only algorithm, so we‘ll use it.
OSU COE cluster across 2 nodes with 20 cores each and one GPU.
Increase test grid size.
Use a screening study to narrow the test grid
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2nd Study

Launch Configuration Study Euler Classic
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2nd Study

Launch Configuration Study Euler Swept
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2nd Study

Heat Results
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2nd Study

Euler Results
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2nd Study

Conclusions

Shared memory is an effective storage strategy.
The swept rule is comparatively more effective for simpler problems
The swept rule is more effective when communication costs are
greater, i.e. cluster.
GPUs must be given many times more work than CPUs to stay busy.
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2nd Study

Future Work

Use Euler for lengthening vs flattening comparison.
2D Implementation
Refine hSweep library workflow
Unstructured grids
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2nd Study
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2nd Study

Questions

Questions?
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