
Swept time-space domain decomposition on GPUs and
heterogeneous computing systems

Daniel Magee

Mechanical Engineering MS Thesis Defense
Oregon State University - School of MIME

8 June 2018

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 1 / 56



Introduction and Motivation

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 2 / 56



Introduction and Motivation

The future of CFD

Challenges
Unsteady Turbulent Flow
Simulations Including
Transition and
Separation
Multidisciplinary,
Multiphysics Simulations
and Frameworks [1]

Turbulent eddies, flowing from left to right in a
shock wave (uses 1.7 million cores) [2].

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 3 / 56



Introduction and Motivation

How do we get there?

High performance computing - HPC

advances in HPC hardware systems and related
computer software are critically important to the
advancement of the state of the art in CFD
simulation

The effectiveness and impact of CFD on the design
and analysis of aerospace products and systems is
largely driven by the power and availability of
modern HPC systems.

- NASA CFD Vision 2030 [1]

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 4 / 56



Introduction and Motivation

Exascale

Exascale is the current goal of HPC development
1018 FLOPS (Floating point operations per second)

4600 nodes, 25,000 Nvidia V100 GPUs.
200 petaFLOPS double-precision.
3 exaFLOPS mixed (single and half-precision) [3].

0Summit Supercomputer - Oak Ridge TN (Soon to be world #1)
Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 5 / 56



Introduction and Motivation

Latency, an Exascale Challenge

As systems get larger, latency increases
TimeCost = f(flops, bandwidth, latency)

Latency and Bandwidth
“Bandwidth is money, Latency is physics.”
Latency, fixed cost of memory access, is related to distance.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 6 / 56



Introduction and Motivation

HPC becoming More heterogeneous

Heterogeneous: A system containing more than one processor

architecture.

This is from 2012, by 2015 it was 100.

0https://blogs.nvidia.com/blog/2012/07/02/
new-top500-list-4x-more-gpu-supercomputers

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 7 / 56

https://blogs.nvidia.com/blog/2012/07/02/new-top500-list-4x-more-gpu-supercomputers
https://blogs.nvidia.com/blog/2012/07/02/new-top500-list-4x-more-gpu-supercomputers


Introduction and Motivation

Why are GPUs good for computing?

We realized that what is good
for graphics is good for many
applications.
Many weak cores that process
simple tasks quickly.
The Memory hierarchy is
exposed so we can assign values
to cache and registers.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 8 / 56



Introduction and Motivation

Thread Hierarchy

The simplicity restricts and liberates the hardware

Threads are weak
because cores are weak.
Branching is penalized.
Threads are not tied to
cores but to groupings
called blocks.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 9 / 56



Introduction and Motivation

What Is To Be Done?

We need software to exploit the diverse architecture, but...

It gets complicated
quickly.
There are many
variables just on the
hardware side.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 10 / 56



Introduction and Motivation

Domain Decomposition

Definition
Domain decomposition is the act of splitting up a large grid among several
parallel work units, essential to parallelizing grid domain problems.

0https://stomp.pnnl.gov/estomp_guide/44304376.stm
Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 11 / 56

https://stomp.pnnl.gov/estomp_guide/44304376.stm


Introduction and Motivation

Scope of Work

Implement and analyze the performance of a swept solver on a GPU
and a GPU/CPU HPC system.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 12 / 56



Related Work

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 13 / 56



Related Work

Problem: Parallelizing Dependency

A simple (classic) decomposition:

Initial conditions - Processes know the values at the locations they are
responsible for and extra values at the edges

Step forward - Process calculates next values at all spatial points
available
Pass Edge to neighbor process each sub-timestep.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 14 / 56



Related Work

Problem: Parallelizing Dependency

A simple (classic) decomposition:

Initial conditions - Processes know the values at the locations they are
responsible for and extra values at the edges
Step forward - Process calculates next values at all spatial points
available

Pass Edge to neighbor process each sub-timestep.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 14 / 56



Related Work

Problem: Parallelizing Dependency

A simple (classic) decomposition:

Initial conditions - Processes know the values at the locations they are
responsible for and extra values at the edges
Step forward - Process calculates next values at all spatial points
available
Pass Edge to neighbor process each sub-timestep.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 14 / 56



Related Work

Solution: Parallel-in-Time

MGRID
Parallel-in-time treats the entire space-time domain as independent, begins
with an initial guess, solves at various grid granularities, converges on
solution.

0computation.llnl.gov/projects/parallel-time-integration-multigrid
Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 15 / 56

computation.llnl.gov/projects/parallel-time-integration-multigrid


Related Work

Similar solution: The Swept rule

The Swept Rule CPU Results from Alhubail et al. [4]

Kuramoto-Sivashinsky Equations Euler Equations

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 16 / 56



Swept Decomposition

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 17 / 56



Swept Decomposition

The Swept Rule as a rule

Simple Principle
Do as much work with the data closest to the processor as possible.

Could also say: it fully exploits the domain of dependence at all grid points.
Domain of Dependence: The region of the space-time grid that can be
calculated from the initial condition.

1D - Triangle
2D - Pyramid
3D - Hypercube

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 18 / 56



Swept Decomposition

The Swept Rule as a method

0 5 10 15 20 25 30

Spatial point

0

2

4

6

8

10

12

14

16

S
ub

-t
im

es
te

p

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 19 / 56



Swept Decomposition

The Swept Rule as a method

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

14

16

L
0
 -> R

0
R

0
 -> L

1
L

1
 -> R

1
R

1
 -> L

0

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 19 / 56



Test Details

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 20 / 56



Test Details

Heat

Finite Difference | Time: Forward, Space: Centered

∂T

∂t
= α∇2T .

Tm+1
i = Fo(Tm

i+1 + Tm
i−1) + (1− 2Fo)Tm

i .

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 21 / 56



Test Details

Kuramoto-Sivashinsky (KS)

The Kuramoto–Sivashinsky equation is a nonlinear, fourth-order,
one-dimensional unsteady PDE.
Finite Difference | Time: Midpoint, Space: Centered

ut = −(uux + uxx + uxxxx) = −
(
1
2
u2
x + uxx + uxxxx

)
,

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+

umi+1 + umi−1 − 2umi
∆x2 +

umi+2 − 4umi+1 + 6umi − 4umi−1 + umi−2

∆x4

)
.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 22 / 56



Test Details

Euler Equations

Finite Volume | Time: Midpoint, Space: Minmod Limited

∂Q

∂t
+
∂F

∂x
= 0

Q =


ρ
ρu
ρe

 ,F =


ρu

ρu2 + P
u(ρe + P)

 ,

Qn+1
i = Qn

i +
∆t

∆x
(Fluxn+1/2

i+1/2 − Fluxn+1/2
i−1/2 )

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 23 / 56



Test Details

Hardware

Same Hardware CPU and GPU both studies

Tesla K40:
Global Memory (GB) 12
Shared Memory (kB/Block) 48
Max Threads Per Block 1024
Compute Capability 3.5
SM Count 15
ClockRate (MHz) 745
CudaCores 2880

Intel Xeon 2630-E5:
8 Cores
2.5 GHz

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 24 / 56



1st Study

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 25 / 56



1st Study

What we want to know

Which GPU memory strategy is best for the swept rule?
Is swept decomposition effective compared to a simple (Classic)
scheme on the GPU?

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 26 / 56



1st Study

1st Study Test Procedure

Performance Metric
Average time per timestep.

Test Run Details
CUDA 8, Double Precision
32 to 1024 threads per block by powers of 2.
1024 to 1048576 spatial points by powers of 2.
50,000 timesteps

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 27 / 56



1st Study

Implementation choices

Classic: One sub-timestep at a time.

Swept: 0 5 10 15 20 25 30

Spatial point

0

2

4

6

8

10

12

14

16

S
ub

-t
im

es
te

p

Shared: Shared Memory - performs all computation on GPU
Hybrid: Passes edge domains to CPU to avoid boundary conditions.
Register: Register memory - shuffled between warp threads.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 28 / 56



1st Study

Heat Equation

Best Run at each problem size

104 105 106

Number of spatial points

100

101

102

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

Classic
Hybrid
Shared

104 105 106

Number of spatial points

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

Hybrid
Shared

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 29 / 56



1st Study

KS Equation

104 105 106

Number of spatial points

100

101

102

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

Classic
Register
Shared

104 105 106

Number of spatial points

1

2

3

4

5

6

7

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

Register
Shared

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 30 / 56



1st Study

Euler Equation

104 105 106

Number of spatial points

101

102

103

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

Classic
Hybrid
Shared

104 105 106

Number of spatial points

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

Hybrid
Shared

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 31 / 56



1st Study

KS Equation CPU vs GPU

104 105 106

Number of spatial points

100

101

102

103

104

T
im

e
 p

e
r 

ti
m

e
st

e
p
 (

u
s)

ClassicCPU
SweptCPU
ClassicGPU
SweptGPU

104 105 106

Number of spatial points

0

50

100

150

200

250

300

S
p
e
e
d
u
p
 v

s 
C

la
ss

ic

ClassicGPU
SweptGPU

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 32 / 56



1st Study

Takeaways

Shared memory is generally the most effective storage strategy.
GPUs are faster than CPUs for these types of problems.
The swept rule becomes less effective as problem complexity grows.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 33 / 56



Heterogeneous Swept Rule

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 34 / 56



Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Allocate
tpb ∗ (nDomains + .5)
slots per process

Constraints
Each process receives an even number of blocks.
GPUs communicate with a single process, and computes blocks are
embedded in that process.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Gather items to pass

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Set new starting point
for domains

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

Fill in the voids

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Heterogeneous swept rule domain splitting

March forward to next
triangle

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 35 / 56



Heterogeneous Swept Rule

Design Point: Software Pattern

MPI: Message Passing Interface - Industry standard for distributed
memory paralleization.
OpenMP: Open Multiprocessing - Launches threads in shared
memory space
CUDA: API for GPU execution

Should we parallelize within sockets with OpenMP? [5]

No, literature shows little evidence of utility [6, 7].

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 36 / 56



Heterogeneous Swept Rule

Design Point: Software Pattern

MPI: Message Passing Interface - Industry standard for distributed
memory paralleization.
OpenMP: Open Multiprocessing - Launches threads in shared
memory space
CUDA: API for GPU execution

Should we parallelize within sockets with OpenMP? [5]
No, literature shows little evidence of utility [6, 7].

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 36 / 56



Heterogeneous Swept Rule

There’s a catch

Anything other than the simplest method (FTCS, Leapfrog) will overwrite
values needed to continue the computation.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

Timestep

Timestep

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 37 / 56



Heterogeneous Swept Rule

There’s a catch

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

10

12

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 37 / 56



Heterogeneous Swept Rule

Solution 1: Flattening

Multi-step methods can often combine steps in with wider stencil.

Spatial point
0 5 10 15 20 25 30

S
ub

-t
im

es
te

p

0

2

4

6

8

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 38 / 56



Heterogeneous Swept Rule

Solution 2: Lengthening (Atomic Decomposition) [8]

All explicit schemes can be decomposed into three-point stencil
steps

// Q = {rho, rho*u, rho*E} Euler
struct states {
double3 Q[2]; // State Vars
double Pr; // Pressure ratio

};

// KS
struct states {
double u[2]; // Velocity
double uxx; // Jerk

};

// Heat
struct states {double T[2];};

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 39 / 56



Heterogeneous Swept Rule

Long Flat KS Discretiztions

Finite Difference | Time: Midpoint, Space: Centered
Using a 5 point stencil

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+

umi+1 + umi−1 − 2umi
∆x2 +

umi+2 − 4umi+1 + 6umi − 4umi−1 + umi−2

∆x4

)
.

But we can treat uxxxx as ∂2uxx
∂x2

um+1
i − umi

∆t
= −

(
(umi+1)2 − (umi−1)2

4∆x
+

(u + uxx)mi+1 + (u + uxx)mi−1 − 2(u + uxx)mi
∆x2

)
.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 40 / 56



Heterogeneous Swept Rule

Flattening vs Lengthening

Tested under same conditions as GPU-only with Kuramoto-Sivashinsky
equation.

104 105 106

Number of Spatial Points

3

4

5

6

7

8
Sp

ee
du

p
Swept
Classic

The flexibility of Lengthening on the GPU comes at a substantial cost.
We still use the lengthening strategy for its universal qualities in the
heterogenous case.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 41 / 56



2nd Study

Topics

1 Introduction and Motivation

2 Related Work

3 Swept Decomposition

4 Test Details

5 1st study: GPU-only results

6 Heterogeneous Swept Rule

7 2nd study: Heterogeneous results

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 42 / 56



2nd Study

New Questions

How much work should we give to the GPU in a heterogeneous
system?
Which strategy for higher order methods is faster?
Is swept decomposition more effective for more complex equations on
heterogeneous architecture?

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 43 / 56



2nd Study

Heterogenous Changes

Use what we learned last time.

New Conditions
Shared is the best GPU-only algorithm, so we‘ll use it.
OSU COE cluster across 2 nodes with 20 cores each and one GPU.
Increase test grid size.
Use a screening study to narrow the test grid

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 44 / 56



2nd Study

Launch Configuration Study Euler Classic

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 1.16e+05

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 1.02e+06

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 5.02e+06

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 1.00e+07

320
400
480
560
640
720
800
880
960
1040

2400
2800
3200
3600
4000
4400
4800
5200
5600

12000
16000
20000
24000
28000
32000
36000
40000
44000

32000

40000

48000

56000

64000

72000

80000

88000

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 45 / 56



2nd Study

Launch Configuration Study Euler Swept

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 1.16e+05

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 1.02e+06

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 5.02e+06

200 400 600
threads per block

0

10

20

30

40

50

60

70

80

G
PU

 A
ff

in
ity

GridSize: 1.00e+07

250
300
350
400
450
500
550
600
650

2000
2400
2800
3200
3600
4000
4400
4800
5200

10000

12000

14000

16000

18000

20000

22000

24000

20000

24000

28000

32000

36000

40000

44000

48000

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 46 / 56



2nd Study

Heat Results

106 107

Grid Size

102

103

tim
e 

pe
r 

tim
es

te
p 

(u
s)

Classic
Swept

106 107

Grid Size

4

6

8

10

12

14

16

18

Sp
ee

du
p

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 47 / 56



2nd Study

Euler Results

106 107

Grid Size

104

tim
e 

pe
r 

tim
es

te
p 

(u
s)

Classic
Swept

106 107

Grid Size

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Sp
ee

du
p

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 48 / 56



2nd Study

Conclusions

Shared memory is an effective storage strategy.
The swept rule is comparatively more effective for simpler problems
The swept rule is more effective when communication costs are
greater, i.e. cluster.
GPUs must be given many times more work than CPUs to stay busy.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 49 / 56



2nd Study

Future Work

Use Euler for lengthening vs flattening comparison.
2D Implementation
Refine hSweep library workflow
Unstructured grids

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 50 / 56



2nd Study

Acknowledgments

NASA award
No. NNX15AU66A

Nvidia (donated GPU) Niemeyer Research
Group

NRG

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 51 / 56



2nd Study

Questions

Questions?

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 52 / 56



2nd Study

Works Cited I

J. P. Slotnick, A. Khodadoust, J. J. Alonso, D. L. Darmofal, W. D.
Gropp, E. A. Lurie, and D. J. Mavriplis, “CFD vision 2030 study: A
path to revolutionary computational aerosciences,” NASA Technical
Report, NASA/CR-2014-218178, NF1676L-18332, Mar. 2014.

I. Bermejo-Moreno, J. Bodart, J. Larsson, B. M. Barney, J. W. Nichols,
and S. Jones, “Solving the compressible Navier–Stokes equations on up
to 1.97 million cores and 4.1 trillion grid points,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. New York, NY, USA:
ACM, 2013, pp. 62:1–62:10.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 53 / 56



2nd Study

Works Cited II

M. Feldman, “Oak ridge readies summit supercomputer for 2018
debut,” https://top500.org/news/
oak-ridge-readies-summit-supercomputer-for-2018-debut/, Nov. 2017,
accessed: 27 May 2018.

M. Alhubail and Q. Wang, “The swept rule for breaking the latency
barrier in time advancing PDEs,” Journal of Computational Physics,
vol. 307, pp. 110–121, 2016.

F. Lu, J. Song, F. Yin, and X. Zhu, “Performance evaluation of hybrid
programming patterns for large cpu/gpu heterogeneous clusters,”
Computer Physics Communications, vol. 183, no. 6, pp. 1172–1181,
2012.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 54 / 56

https://top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/


2nd Study

Works Cited III

R. T. Mills, K. Rupp, M. Adams, J. Brown, T. Isaac, M. Knepley,
B. Smith, and H. Zhang, “Software strategy and experiences with
manycore processor support in petsc,” SIAM Pacific Northwest
Regional Conference, Oct. 2017.

D. A. Jacobsen and I. Senocak, “Multi-level parallelism for
incompressible flow computations on gpu clusters,” Parallel Computing,
vol. 39, no. 1, pp. 1–20, 2013.

Q. Wang, “Decomposition of stencil update formula into atomic
stages,” 2017.

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 55 / 56



2nd Study

QuestionsPlus

Questions?

Daniel Magee (MS Defense) Swept time-space domain decomposition on GPUs and heterogeneous computing systems8 June 2018 56 / 56


	Introduction and Motivation
	Related Work
	Swept Decomposition
	Test Details
	1math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgst study: GPU-only results
	Heterogeneous Swept Rule
	2math text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgnd study: Heterogeneous results

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PauseLeft: 
	2.PlayLeft: 
	2.PlayPauseLeft: 
	2.PauseRight: 
	2.PlayRight: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 


